
EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

1 

UNIT-I 

The 8086 Microprocessor 

Introduction to 8086 – Microprocessor architecture – Addressing modes - Instruction set and 

assembler directives – Assembly language programming – Modular Programming - Linking and 

Relocation - Stacks - Procedures – Macros – Interrupts and interrupt service routines – Byte and 

String Manipulation.  

1. Introduction to 8086 

8086-HARDWARE ARCHITECTURE 

AUQ: Explain the features of 8086 microprocessor. (May 2011, 8 Marks) 

The features of 8086 are: 

 The 8086 is a 16 bit processor 

 The 8086 has a 16 bit data bus 

 The 8086 has a 20 bit address bus 

 Direct addressing capability 1M byte of memory(220) 

 It provides fourteen 16 bit register 

 24 operand addressing modes 

 Bit, byte, word and block operations. 

 8 and 16 bit signed and unsigned arithmetic operations including multiply and divide 

 Four general purpose 16 bit registers: AX, BX, CX, DX 

 Two pointer group registers: stack pointer (SP), Base pointer(BP) 

 Two index group registers: source index (SI), destination index (DI) 

 Four segment registers: code segment (CS), Data segment (DS), Stack segment (SS), Extra 

segment(ES) 

 6 Status flag and 3 control flags. 

 Memory is byte addressable- each address stores an 8 bit value. 

 Address can be up to 32 bit long, resulting in 4GBof memory. 

 Range of clock rates: 5MHZ for8086, 8MHZ for8086-2, 10MHZ for8086-1 

 Multibus system compatible interface 

 Available in 40 pin plastic package and lead cerdip. 

2. 8086 Microprocessor Architecture: 

AUQ: Explain the internal architecture of 8086 microprocessor.(Dec-2003,04,06,08,11,12,13, 

May-2003,05,07,08,10,11,15, May 2016, Dec 2016, May 2017) 

The internal functions of 8086 processor are partitioned logically into two processing units. 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

2 

The 8086 CPU is divided into two independent functional parts, 

1. Bus Interface Unit (BIU) 

2. Execution Unit (EU) 

 The BIU and EU function independently. 

 The BIU interface the 8086 to the outside world. The BIU fetches, reads data from memory and 

ports, and writes data to memory and I/O ports. 

 EU receives program instruction codes and data from the BIU, executes these instructions and 

stores the results either in general registers or output them puts all its data through the BIU. 

The BIU contains 

1. Segment Registers, 2. Instruction Pointer (IP), 3.Instruction Queue 

The EU contains 

1. ALU 

2. General purpose registers 

3. Index registers 

4. Pointers 

5. Flag register 

 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

3 

General Purpose Registers 

All general registers of the 8086 microprocessor can be used for arithmetic and logic operations. The 16 

bit general purpose registers are 

1. Accumulator register (AX) 

2. Base register (BX) 

3. Count register (CX) 

4. Data register (DX) 

(i) Accumulator register (AX) 

 Accumulator (AX) is a 16 bit register; consists of two 8-bit registers AL and AH. 

 AL contains the low-order byte of the word, and AH contains the higher order byte. 

 Accumulator can be used for Input/ Output (I/O) operations and string manipulation. 

(ii) Base register (BX) 

 Base register (BX) is a 16 bit register; consist of two 8-bit registers BL and BH.  

 BL consist the lower order byte of the word, and BH contains the higher order byte.  

 BX register contains a data pointer used for based, based indexed or register indirect addressing. 

(iii) Count register (CX) 

 Counter register (CX) is a 16 bit register; consists of two 8-bit registers CL and CH. 

  CL register contain the low order byte of the word, and CH contains the high order byte.  

 Count register can be used as a counter in string manipulation and shift/ rotate instructions. 

(iv)Data register (DX) 

 Data register (CX) is a 16 bit register; consists of two 8-bit registers DL and DH.  

 DL register contain the low order byte of the word, and DH contains the high order byte.  

 Data register can be used as a port number in I/O operations.  

 In integer 32-bit multiply and divide instruction the DX register contains higher order word of the 

initial or resulting number. 

Segment Registers 

There are four different 64 KB segments for instructions, stack, data and extra data. 

The segment registers are: 

1. Code segment (CS) 

2. Stack segment (SS) 

3.  Data segment (DS) 

4. Extra segment (ES) 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

4 

 (i)  Code segment (CS) 

 Code segment is a 16-bit register containing address of 64 KB segment with processor instructions. 

 The processor uses CS register for all accesses to instructions referenced by instruction pointer (IP).  

 CS register cannot be changed directly.  

 The CS register is automatically updated during FAR JUMP, FAR CALL and FAR RET 

instructions 

(ii)  Stack segment (SS) 

 Stack segment is a 16-bit register containing address of 64KB segment with program stack.  

 By default, the processor assumes that all data referenced by the stack pointer (SP) and base 

pointer (BP) registers are located in the stack segment. 

 SS register can be changed directly using POP instruction. 

(iii) Data segment (DS) 

 Data segment is a 16-bit register containing address of 64KB segment with program data.  

 By default, the processor assumes that all data referenced by general registers (AX, BX, CX, and 

DX) and index register (SI, DI) is located in the data segment.  

 DS register can be changed directly using POP and LDS instructions. 

(iv) Extra segment (ES) 

 Extra segment is a 16-bit register containing address of 64KB segment, usually with program data.  

 By default, the processor assumes that the DI register references the ES segment in string 

'manipulation instructions.  

 ES register can be changed directly using POP and LES instructions. 

 It is possible to change default segments used by general and index registers by prefixing instructions 

with a CS, SS, DS or ES prefix. 

Pointer Registers 

(i)   Stack Pointer (SP) 

Stack pointer is a 16-bit register pointing to program stack. 

(ii) Base Pointer (BP) 

 Base pointer is a 16-bit register pointing to data in the stack segment.  

 BP register is usually used for based, based indexed or register indirect addressing. 

 

 

 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

5 

Index Registers: (i)  Source Index (SI) 

 Source index is a 16-bit register.  

 SI is used for indexed, based indexed and register indirect addressing, as well as a source data 

address in string manipulation instructions. 

(ii) Destination Index (DI) 

 Destination index is a 16-bit register.  

 DI is used for indexed, based indexed and register indirect addressing, as well as a destination 

data address in string manipulation instructions. 

Instruction Pointer (IP) 

 Instruction pointer is a 16-bit register. The operation is same as the program counter.  

 The IP register is updated by the BIU to point to the address of the next instruction.  

 Programs do not have direct access to the IP, but during execution of a program the IP can be 

modified or saved and restored from the stack. 

Flag register 

Flag register is a 16-bit register containing nine 1-bit flags: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

    OF DF IF TF SF ZF  AF  PF  CF 

Six status or condition flags (OF, SF, ZF, AF, PF, CF) 

Three control flags (TF, DF, IF) 

• Overflow Flag (OF) – It is set if an overflow occurs, i.e., a result is out of range. 

• Sign Flag (SF) – It is set if the most significant bit of the result is set. 

• Zero Flag (ZF) – It is set if the result is zero. 

• Auxiliary carry Flag (AF) – It is set if there is a carry out of bit 3 during addition or borrow by bit 

3 during subtraction. This flag is used exclusively for BCD arithmetic. 

• Parity Flag (PF) – It is set to 1 if the low-order 8-bits of the result contain an even number of 1s. 

• Carry Flag (CF) – It is set if carry from or borrow to the most significant bit during last result 

calculation. 

• Trap Flag (TF) – if set, a trap is executed after each instruction.  

• Direction Flag (DF) – Used by string manipulation instructions. If set then string 

manipulation instructions will auto- decrement index registers. If cleared then the index 

registers will be auto-incremented. 

• Interrupt-enable Flag (IF) - Setting this bit enables maskable interrupts. 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

6 

Instruction Queue: 

 . The instruction queue is a First-In-First-out (FIFO) group of registers where 6 bytes of instruction 

code is pre-fetched from memory. 

  It is being done to speedup program execution by overlapping instruction fetch and execution. 

This mechanism is known as PIPELINING. 

 If the queue is full, the BIU does not perform any bus cycle. If the BIU is not full and can store 

atleast 2 bytes and EU does not request it to access memory, the BIU may pre-fetch instructions. 

 If the BIU is interrupted by the EU for memory access while pre-fetching, the BIU first completes 

fetching and then services the EU. In case of JMP instruction, the BIU will reset the queue and 

.begin refilling after passing the new instruction to the EU. 

ALU: Arithmetic and Logic Unit 

ALU is a 16 bit register. It can add, subtract, increment, decrement, complement, shift numbers and 

performs AND, OR, XOR operations. 

Control unit: " 

Generates timing and control signals to perform the internal operations of the microprocessor. 

 

3. The 8086 Addressing Modes 

AUQ: What are the addressing modes in 8086? Explain with example.(Dec-2006,07,08,10,11, 

May2006,07,08,09,11,15, May 2016, Dec 2016) 

Addressing modes in 8086: 

The 8086 memory addresses are calculated by adding the segment register contents to an offset 

address. The offset address calculation depends on the addressing mode being used. The total number of 

address lines in the 8086 is 20 whereas the segment registers are 16 bits. The actual address in memory 

(effective address) is calculated as per the following steps. 

• The segment register contents are multiplied by 1OH, thus, shifting the contents left by 4 bits. 

This results in the starting address of the segment in memory. 

• The offset address is calculated. The offset address is basically the offset of the actual memory 

location from the starting location of the segment. The calculation of this offset value depends on 

the addressing mode being used. 

• The offset address is added to the starting address of the segment to get the effective address, i.e. 

the actual memory address. 

 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

7 

Effective Address – 16 bits 

     +      4 bits 

Segment Address – 16 bits 

 

Physical Address – 20 bits 

Suppose a segment register contents are xyzwH, and the offset value calculated is abcdH, then:  

• Starting address of the segment 

• Offset address 

• Effective address 

The addressing modes specify the location of the operand and also how its location may be 

determined. The following addressing modes are supported in the 8086. 

 

    Register Addressing Mode 

 Immediate Addressing Mode 

 Direct Memory Addressing Mode 

 Register Indirect Addressing Mode 

 Base plus Index Register Addressing Mode 

 Register Relative Addressing Mode 

 Base plus Index Register Relative Addressing Mode 

 String Addressing Mode 

Register Addressing Mode 

When both destination and source operands reside in registers, the addressing mode is known as 

register addressing mode. Following are the examples: 

 MOVAX,BX 

Move the contents of BX register to AX register. The contents of BX register remain unchanged. 

 AND AL, BL 

AND the contents of AL register with the contents of BL register and place the resultant contents 

in AL register. 

Immediate Addressing Mode 

When one of the operands is part of the instruction, the addressing mode is known as immediate 

addressing mode. Examples are given below 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

8 

 MOV CX, 2346H 

Copy into CX the 16-bit data 2346H. 

 SUB AL, 24H 

Subtract 24H from the contents of AL register and put the result in AL register. 

Direct Memory Addressing Mode 

In this mode, the 16-bit offset address is part of the instruction as displacement field. It is stored as 16-bit 

unsigned or 8-bit sign-extended number. 

 MOV (4625H), Dl 

Copy the contents of DL register into memory locations calculated from Data Segment register and offset 

4625H. 

 OR AL, (3030H) 

OR the contents of AL register with the contents of memory location calculated from DS register and 

offset 3030H. 

Register Indirect Addressing Mode 

In this addressing mode, the offset address is specified through pointer register or index register.  

For index register, the SI (Source Index) register or DI (Destination Index) register may be used, 

whereas for pointer register, BX (Base Register) register or BP (Base Pointer) register may be used. 

Following are some examples of the application of the register indirect addressing mode. 

 MOV AL, (BP) 

Copy into AL register the contents of memory location, whose address is calculated using offset as 

contents of BP register and the contents of DS register. 

Base plus Index Register Addressing Mode 

In this mode, both base register (BP or BX) and index register (SI or DI) are used to indirectly 

address the memory location. An example is given below. 

 MOV (BX + DI), AL 

Copy the contents of AL register into memory location whose address is calculated using the contents of 

DS (Data Segment), BX (Base Register) and DI (Destination Index) registers. 

Register Relative Addressing Mode 

This mode is similar to base plus index addressing mode. In this mode, the offset is calculated using 

either a base register (BP, BX) or an index register (SI, DI) and the displacement specified as an 8 -bit or a 

16-bit number, as part of the instruction.  

 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

9 

 MOV AX, (DI + 06) 

Copy to AL the contents of memory location whose address is calculated using DS (Data Segment), DI 

(Destination Index) register with displacement of 06, and copy to AH the contents of the next higher 

memory location. 

Base plus Index Register Relative Addressing Mode 

This addressing mode is basically the combination of base plus index register addressing mode and 

register relative addressing mode. To find the address of the operand in memory, a base register (BP or 

BX), an index register (DI or SI) and the displacement which is specified in instruction is used along with 

the data segment register. For example: 

 MOV (BX + DI + 2), CL 

Copy the contents of the CL register to the memory location whose address is calculated using DS (Data 

Segment), BX (Base Register) and DI (Destination Index) registers and 02 as displacement. 

String Addressing Mode 

In this addressing mode, the string instruction uses index registers implicitly to access memory.  

Example: MOVSB 

Copy the byte from the source string location determined by DS and SI to the destination string 

location determined by ES and DI. 

 The addressing modes for branch related instructions are  

 Intrasegment direct (within the same segment) 

 Intrasegment Indirect 

 Intersegment Direct (Control transfer to different segment) 

 Intersegment Indirect 

 

Intrasegment direct (within the same segment) 

 

 

                                                                                                                            Effective Address 

 

 

    If the displacement is 8 bit long, it is called short jump SJMP 

    If the displacement is 16 bit long, it is called Long jump LJMP. 

     For example  CALL NEAR  

    A NEAR JMP is a jump where destination location is in the same code segment. In this case only IP    

Displacement 

IP 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

10 

    is changed. 

Intrasegment Indirect  

 The content of register or memory is accessed using any of the above data related addressing    

    mode except immediate mode. 

 

Intersegment Direct  (control transfer is in different segment) 

     The purpose of the addressing mode is to provide a means of branching from one code 

segment to another .Replaces the content of IP with the part of the instruction and the contents of the CS 

with another part of instruction. 

    Example: FAR CALL 

     A FAR JMP is a jump where destination location is from a different segment. In this case 

both IP and CS are changed as specified in the destination. 

 

   Intersegment Indirect 

 The content of memory block containing 4 bytes.ie IP (LSB),IP(MSB),CS (LSB),and CS(MSB) 

sequentially .The starting address of the memory block may be referred using any of the addressing mode 

except immediate mode. 

 

4. The instruction set of 8086. 

    Explain the instruction set of 8086 microprocessor. 

Give three examples for the following 8086 microprocessor instructions: String Instructions,    

Process Control Instruction, Program Execution Transfer Instructions and Bit manipulation   

Instructions. (May 2010)(June 2016) 

Explain the data transfer, arithmetic and branch instructions with examples.   (June 2016) 

 

Intel 8086 has approximately 117 instructions. These instructions are used to transfer data between 

registers, register to memory, memory to register or register to I/O ports and other instructions are used 

for data manipulation. 

But in Intel 8086 operations between memory to memory is not permitted. These instructions are 

classified in to six-groups as follows. 

1. Data Transfer Instructions 

2. Arithmetic Instructions 

3. Bit Manipulation Instructions 

4. String Instructions 

5. Program Execution Transfer Instructions 

      6.  Processor Control Instructions 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

11 

Data Transfer Instructions 

 

1. MOV 

MOV destination, source 

This (Move) instruction transfers a byte or a word from the source operand to the destination operand. 

(DEST) ← (SRC),  DEST = Destination, SRC = Source 

Example: 

MOV AX, BX 

MOVAX, 2150H 

MOV AL, [1135] 

MOV [4186], AL 

MOV SS, DX 

MOV [BX], DS 

2. PUSH 

PUSH Source 

This instruction decrements SP (stack pointer) by 2 and then transfers a word from the source operand 

to the top of the stack now pointed to by stack pointer. 

(SP) ← (SP)-2 

((SP) + 1: (SP)) ← (SRC) 

Example: 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

12 

PUSH SI 

PUSH BX 

3. POP 

POP destination 

This instruction transfers the word at the current top of stack (pointed to by SP) to the destination 

operand and then increments SP by 2, pointing to the new top of the stack. 

(DEST) ← ((SP) + 1:(SP)) 

(SP) ← (SP) + 2 

Example: 

POP DX 

POP DS 

4. LAHF 

Load Register AH from Flags 

This instruction copies Sign flag(S), Zero flag (Z), Auxiliary flag (AC). Parity flag (P) and Carry flag 

(C) of 8085 into bits 7, 6, 4, 2 and 0 respectively, of register AH. The content of bits 5, 3 and 1 is 

undefined. 

                     AH← 

5. SAHF 

Store Register AH into Flags 

This instruction transfers bits 7, 6, 4, 2 and 0 from register AH into S, Z, AC, P and C flags respectively, 

thereby replacing the previous values. 

←AH 

6. XCHG 

XCHG destination, source 

This (Exchange) instruction switches the contents of the source and destination operands. 

(Temp) ← (DEST) 

(DEST) ← (SRC) 

(SRC) ← (Temp) 

Example: 

XCHG AX, BX 

XCHG BL, AL 

S Z X A

C 

X P X C 

S Z X A

C 

X P X C 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

13 

7. XLAT 

XLAT table 

 This (Translate) instruction replaces a byte in the AL register with a byte from a 256-byte, user-coded 

translation table. 

 XLAT is useful for translating characters from one code to another like ASCII to EBCDIC. Register 

BX is the starting point of the table. The byte in AL is used as an index into the table and is replaced 

by the byte at the offset in the table corresponding to AL's binary value. 

AL ← ((BX) + (AL)) 

Example : 

XLAT    ASCII_TAB 

XLAT    Table_3 

8. LEA 

LEA destination, source 

This (Load Effective Address) instruction transfers the offset of the source operand (memory) to the 

destination operand (16-bit general register). 

(REG) ← EA 

Example : 

LEA BX , [BP] [DI] LEA SI, [BX + 02AF H] 

9. LDS 

LDS destination, source 

This (Load pointer using DS) instruction transfers a 32-bit pointer variable from the source operand 

(memory operand) to the destination operand and register DS. 

(REG) ← (EA) 

(DS← (EA+2) 

Example: 

LDS  SI, [6AC1H] 

10.  LES 

LES destination, source 

This (Load pointer using ES) instruction transfers a 32-bit pointer variable from the source operand 

(memory operand) to the destination operand and register ES. 

(REG) ← (EA) 

(ES) ← (EA+2) 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

14 

Example: 

LES DI, [BX] 

11. IN  

IN accumulator, port 

This (Input) instruction transfers a byte or a word from an input port to the accumulator  (AL or AX). 

(DEST) ← (SRC) 

Example: 

IN AX, DX 

IN AL, 062H 

12. OUT 

OUT port, accumulator 

This (Output) instruction transfers a byte or a word from the accumulator (AL or AX) to an output port. 

(DEST) ← (SRC) 

Example: 

OUT  DX, AL 

OUT  31, AX 

 

Arithmetic Instructions 

 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

15 

1. ADD 

ADD destination, source 

This (Add) instruction adds the two operands (byte or word) and stores the result in destination operand. 

(DEST) ←  (DEST) + (SRC) 

Example: 

ADD CX, DX 

ADD AX, 1257 H 

ADDBX, [CX] 

2. ADC 

ADC destination, source 

This (Add with carry) instruction adds the two operands and adds one if carry flag (CF) is set and 

stores the result in destination operand. 

(DEST) ←  (DEST) + (SRC) + 1 

Example: 

ADC AX, BX 

ADC AL, 8 

ADC CX, [BX] 

3. SUB 

SUB destination, source 

This (Subtract) instruction subtracts the source operand from the destination operand and the result is 

stored in destination operand. 

(DEST) ← (DEST) - (SRC) 

Example: 

SUB AX, 6541 H 

SUB BX, AX 

SUB SI, 5780 H 

4. SBB 

SBB destination, source 

This (Subtract with Borrow) instruction subtracts the source from the destination and subtracts 1 if 

carry flag (CF) is set. The result is stored in destination operand. 

(DEST) ← (DEST) - (SRC) -1 

Example: 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

16 

SBB  BX, CX 

SBB AX, 2 

5. CMP 

CMP destination, source 

This (Compare) instruction subtracts the source from the destination, but does not store the result. 

(DEST) - (SRC) 

Example: 

CMP AX, 18 

CMP BX, CX 

6. INC 

INC destination 

This (Increment) instruction adds 1 to the destination operand (byte or word). 

(DEST) ← (DEST) + 1 

 

Example: 

INC BL 

INC CX 

7. DEC 

DEC destination 

This (Decrement) instruction subtracts 1 from the destination operand. 

(DEST) ← (DEST)-1 

Example: 

DEC BL 

DEC AX 

8. NEG 

NEG destination 

This (Negate) instruction subtracts the destination operand from 0 and stores the result 

in destination. This forms the 2's complement of the number. 

(DEST) ← 0 - (DEST) 

Example: NEG AX 

NEG CL 

 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

17 

9. DAA 

This (Decimal Adjust for Addition) instruction converts the binary result of an ADD or ADC 

instruction in AL to packed BCD format. 

If the auxiliary carry flag is set or the low 4 bits of AL are greater than 9, then 06 H is added to AL. If 

the carry flag is set or the high 4 bits of AL are greater than 9, then 60 H is added to the AL. 

10. DAS 

This (Decimal Adjust for Subtraction) instruction converts the binary result of a SUB or SBB 

instruction in AL to packed BCD format. 

11. AAA 

This (ASCII Adjust for Addition) instruction adjusts the binary result of ADD or ADC instruction. 

If bits 0-3 of AL contain a value greater than 9, or if the auxiliary carry flag (AF) is set, the CPU adds 

06 to AL and adds 1 to AH. The bits 4-7 of AL are set to zero. 

(AL) ← (AL) + 6 

(AH) ← (AH) +1 

(AF) ←1 

Example: 

AAA 

 

Before execution                 

AH     AL 

00      0B 

After execution 

AH   AL 

01    01 

12.  AAS 

This (ASCII Adjust for Subtraction) instruction adjusts the binary result of a SUB or SBB instruction. 

If D3 - D0  of AL>9, 

(AL) ← (AL) – 6 

(AH) ← (AH) – 1 

(AF) ←1 

13.MUL 

MUL source 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

18 

 This (Multiply) instruction multiply AL or AX register by register or memory location contents. 

 Both operands are unsigned numbers. 

 If the source is a byte (8 bit), then it is multiplied by register AL and the result is stored in AH and AL. 

 If the source operand is a word (16 bit), then it is multiplied by register AX and the result is stored in 

AX and DX registers. 

If 8 bit data,    (AX) ← (AL) × (SRC) 

If 16 bit data, (AX), (DX) ← (AX) × (SRC) 

Example: 

MUL25 

MUL CX . 

MULBL 

14.IMUL 

IMUL Source 

This (Integer Multiply) instruction performs a signed multiplication of the source operand and the 

accumulator. 

If 8 bit data,       (AX) ← (AL) × (SRC) 

If 16 bit data,     (AX), (DX) ← (AX) × (SRC) 

Example: 

IMUL 250 

IMUL  BL 

15. AAM 

This (ASCII Adjust for Multiplication) instruction adjusts the binary result of a MUL instruction. AL is 

divided by 10(0AH) and quotient is stored in AH. The remainder is stored in AL. 

(AH) ← (AL/OAH) 

(AL) ← Remainder 

16. DIV 

DIV Source 

 This (Division) instruction performs an unsigned division of the accumulator by the source operand. 

 It allows a 16 bit unsigned number to be divided by an 8 bit unsigned number, or a 32 bit unsigned 

number to be divided by a 16 bit unsigned number. 

 If byte (8-bit) operation is performed, the 8 bit quotient is stored to AL and 8 bit remainder is stored 

to AH register. 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

19 

 

 If the source operand is a word (16 bit), the 16 bit quotient is stored in AX and the remainder is stored 

in DX register. 

For 8 bit data,  AX / source 

(AL) ← Quotient 

(AH)  ← Remainder 

For 16 bit data, AX, DX / Source 

(AX) ← Quotient 

(DX) ← Remainder 

Example: 

DIV CX 

DIV 321 

17.IDIV 

IDIV source 

This (Integer Division) instruction performs a signed division of the accumulator by the source operand. 

For 8 bit data,    AX / Source 

(AL) ← Quotient 

(AH) ← Remainder 

For 16 bit data,   AX, DX/Source 

(AX) ← Quotient 

(DX) ← Remainder 

Example: 

IDIV CL 

IDIVAX 

18. AAD 

This (ASCII Adjust for Division) instruction adjusts the unpacked BCD dividend in AX before a 

division operation. AH is multiplied by 10(0AH) and added to AL. AH is set to zero. 

(AL) ← (AH × 0AH) + (AL) 

(AH) ←0 

19. CBW 

This (Convert Byte to Word) instruction converts a byte to a word. It extends the sign of the byte in 

register AL through register AH. 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

20 

This instruction can be used for 16 bit IMUL or IDIV instruction. 

Example: 

 

20. CWD 

This (Convert Word to Double word) instruction converts a word to a double word. It extends the sign of 

the word in register AX through register DX. 

If AX < 8000 H, then DX = 0000 H 

If AX > 8000 H, then DX = FFFFH 

 

Example: 

 

 

Bit Manipulation Instructions 

 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

21 

(i)    Logical Instructions : AND, OR, XOR, NOT, TEST 

(ii)    Shift Instructions : SHL, SAL, SHR, SAR 

(iii)   Rotate Instructions : ROL, ROR, RCL, RCR 

1. AND 

AND destination, source 

This (AND) instruction performs the logical "AND" of the source operand with the destination operand and 

the result is stored in destination. 

(DEST) ← (DEST) "AND" (SRC) 

Example: 

AND BL, CL 

AND AL, 0011 1100 B 

2. OR 

OR destination, source 

This (OR) instruction performs the logical "OR" of the source operand with the destination operand and 

the result is stored in destination. 

(DEST) ← (DEST) "OR" (SRC) 

Example: 

OR AX, BX 

OR AL, 0FH 

3. XOR 

XOR destination, source 

This (Exclusive OR) instruction performs the logical "XOR" of the two operands and the result is stored 

in destination operand. 

(DEST) ←  (DEST) "XOR"(SRC) 

4. NOT 

NOT destination 

This (NOT) instruction inverts the bits (forms the l's complement) of the byte or word. 

(DEST)  ← 1 's complement of (DEST) 

Example: 

NOT AX 

5. TEST 

TEST destination, source 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

22 

This (TEST) instruction performs the logical "AND" of the two operands and updates the flags but does 

not store the result. 

(DEST) "AND" (SRC) 

Example: 

TEST  AL, 15 H 

TEST  SI, DI 

6. SHL 

SHL destination, count 

This (Shift Logical Left) instruction performs the shift operation. The number of bits to be shifted is 

represented by a variable count, either 1 or the number contained in the CL register. 

 

Example 

SHL AL, 1 

Before execution: 

CF                                                   AL 

0  1 1 0 0 1 1 0 0 

 

 

After execution: 

CF                                                   AL 

1  1 0 0 1 1 0 0 0 

 

7. SAL 

SAL destination, count 

SAL (Shift Arithmetic Left) and SHL (Shift Logical Left) instructions perform the same operation and 

are physically the same instruction. 

Example 

SAL AL, CL 

SAL AL, 1 

8. SHR 

SHR destination, count 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

23 

This (Shift Logical Right) instruction shifts the bits in the destination operand to the right by the number 

of bits specified by the count operand, either 1 or the number contained in the CL register. 

Example 

SHR  BL, 1 

SHR BL, CL 

 

The SHR instruction may be used to divide a number by 2. For example, we can divide 32 by 2, 

MOV  BL, 32   ;   0010   0000    (32) 

SHR  BL, 1       ;   0001    0000   (16) 

SHR  BL, 1       ;   0000   1000    (8) 

SHR  BL, 1       ;   0000   0100    (4) 

SHR  BL, I       ;   0000   0010    (2) 

9. SAR 

SAR destination, count 

This (Shift Arithmetic Right) instruction shifts the bits in the destination operand to the right by the 

number of bits specified in the count operand. Bits equal to the original high-order (sign) bits are shifted in 

on the left, thereby preserving the sign of the original value. 

 

Example : 

SAR BL, 1 

Before execution: 

CF                                                   BL 

0  1 1 0 0 1 1 0 0 

 

After execution: 

CF                                                   BL 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

24 

0  1 1 1 0 0 1 1 0 

 

10.  ROL 

ROL destination, count 

This (Rotate Left) instruction rotates the bits in the byte/word destination operand to the left by the 

number of bits specified in the count operand. 

 

Example: 

ROL AL, 1 

Before execution: 

CF                                                   AL 

0  1 1 0 0 1 1 0 0 

 

After execution: 

CF                                                   AL 

1  1 0 0 1 1 0 0 1 

 

 

11. ROR 

ROR destination, count 

This (Rotate Right) instruction rotates the bits in the byte/word destination operand to the right by the 

number of bits specified in the count operand. 

 

Example: 

ROR AL, 1 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

25 

Before execution: 

CF                                                   AL 

0  1 1 0 0 1 1 0 0 

 

After execution: 

CF                                                   AL 

0  0 1 1 0 0 1 1 0 

 

12. RCL 

RCL destination, count 

This (Rotate through Carry Left) instruction rotates the contents left through carry by the specified 

number of bits in count operand. 

 

Example: 

RCL AL, 1 

Before execution: 

CF                                                   AL 

1  0 0 0 0 1 1 1 1 

 

After execution: 

CF                                                   AL 

0  0 0 0 1 1 1 1 1 

 

13.RCR 

RCR destination, count 

This (Rotate through Carry Right) instruction rotates the contents right through carry by the specified 

number of bits in the count operand. 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

26 

 

Example: 

RCR AL, 1 

Before execution: 

CF                                                   AL 

1  1 1 0 0 0 0 1 0 

 

After execution: 

CF                                                   AL 

0  1 1 1 0 0 0 0 1 

 

 

String Instructions 

 

1. REP 

 

 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

27 

REP MOVS destination, Source 

This (Repeat) instruction converts any string primitive instruction into a re-executing loop. It specifies a 

termination condition which causes the string primitive instruction to continue executing until the 

termination condition is met. REP is used in conjunction with the MOVS and STOS instructions. 

Example: 

REP MOVS CL, AL 

The other Repeat instructions are: 

REPE        -    Repeat while Equal 

REPZ        -   Repeat while zero 

REPNE     -    Repeat while Not Equal 

REPNZ     -    Repeat while Not Zero 

The above instructions are used with the CMPS and SCAS instructions. 

Example: 

REPE     CMPS destination, source 

REPNE   SCAS destination 

2.MOVS 

MOVS  destination - string, source-string 

This (Move String) instruction transfers a byte/word from the source string (addressed by SI) to the 

destination string (addressed by DI) and updates SI and DI to point to the next string element. 

(DEST) ← (SRC) 

Example: 

MOVS Buffer 1, Buffer 2 

3. CMPS 

CMPS destination-string, source-string 

This (Compare String) instruction subtracts the destination byte/word (addressed by 

DI) from the source byte/word (addressed by SI). It affects the flags but does not affect the 

operands. -. 

Example: 

CMPS Buffer 1, Buffer 2 

4. SCAS 

SCAS destination-string 

 This (Scan String) instruction subtracts the destination string element (addressed by DI) from the 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

28 

contents of AL or AX and updates the flags. 

 ‘The contents of destination string or accumulator are not altered. 

 After each operation, DI is updated to point to the next string element 

Example: 

SCAS Buffer 

5. LODS 

LODS source-string 

This (Load String) instruction transfers the byte/word string element addressed by SI to register AL or 

AX and updates SI to point to the next element in the string. 

(DEST)←(SRC) 

Example: 

LODSB    name 

LODSW   name 

6. STOS 

STOS destination - string 

This (Store String) instruction transfers a byte/word from register AL or AX to the string element 

addressed by DI and updates DI to point to the next location in the string. 

(DEST) ← (SRC) 

Example: STOS display 

Program Transfer Instructions 

Unconditional instructions : CALL, RET, JMP 

Conditional instructions : JC, JZ, JA 

Iteration control instructions : LOOP, JCXZ 

Interrupt instructions      : INT, INTO, IRET 

1. CALL 

 CALL procedure - name 

 This (CALL) instruction is used to transfer execution to a subprogram or procedure. 

 RET (return) instruction is used to go back to the main program. 

 There are two basic types of CALL : NEAR and FAR 

Intra-Segment CALL: 

 A NEAR-CALL is a call to a procedure which is in the same code segment as the CALL instruction. 

 When 8086 executes a NEAR-CALL instruction, it decrements the stack pointer (SP) by 2 and copies 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

29 

the offset of the next instruction after the CALL on the stack. 

 It loads IP with the offset of the first instruction of the procedure in same segment. 

 This NEAR-CALL is known as Intra-segment CALL. 

Inter-Segment CALL: 

 A FAR-CALL is a call to a procedure which is in a different segment from that which contains the 

CALL instruction. 

 When 8086 executes a FAR-CALL, it decrements the SP by 2 and copies the contents of the CS register 

to the stack. 

 It then decrements SP by 2 again and copies the offset of the instruction after the CALL to the stack. 

 Finally it loads CS with the segment base of the segment which contains the procedure and IP with the 

offset of the first instruction of the procedure in that segment. 

 This FAR-CALL is known as Inter-segment CALL. 

Example: 

CALL NEAR 

CALL AX 

2.RET 

This (Return) instruction will return execution from a procedure to the next instruction after the CALL 

instruction in the main program. 

If intra-segment, IP is popped off the stack; SP =SP+2 

If inter-segment, CS is popped off the stack; SP = SP+2 

IP is popped off the stack; SP=SP+2 

If optional POP value is used, then SP= SP + value. 

Example: 

RET 

RET 6 

3. JMP 

JMP target 

This (Jump) instruction unconditionally transfers control to the target location. The target operand may 

be obtained from the instruction itself (direct JMP) or from memory or a register referenced by the 

instruction (indirect JMP). 

A NEAR-JMP (Intra-segment) is a jump where destination location is in the same code segment. In this 

case only IP is changed. 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

30 

IP = IP + signed displacement 

A FAR-JMP (Inter-segment) is a jump where destination location is from a different segment. In this case 

both IP and CS are changes as specified in the destination. 

Example: 

JMPBX 

Conditional JMP 

Instruction Operation 

JC Jump if carry 

JNC Jump if no carry 

JZ Jump if Zero 

JNZ Jump if not zero 

JS Jump if sign or negative 

JNS Jump if positive 

JP/JPE Jump if parity/parity even 

JNP/JPO Jump if not parity/odd parity 

JO Jump if overflow 

JNO Jump if no overflow 

JA/JNBE Jump if above/not below or equal 

JAE/JNB Jump if above or equal/not below 

JB/JNAE Jump if below/not above or equal 

JBE/JNA Jump if below or equal / not above 

JG/JNLE Jump if greater/not less than nor equal 

JGE/JNL Jump if greater or equal/not less than 

JL/JNGE Jump if less/neither greater nor equal 

JLE/JNG Jump if less than or equal / not greater 

 

 

5.LOOP 

LOOP label 

This (Loop if CX not zero) instruction decrements CX by 1 and transfers control to the target operand if 

CX is not zero. Otherwise the instruction following LOOP is executed. 

If CX≠0, CX = CX - l 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

31 

IP = IP + displacement 

If CX=0, then the next sequential instruction is executed. 

Example: 

LOOP again 

6. LOOPE/LOOPZ 

LOOPE/LOOPZ label 

These (LOOP while Equal/Loop while Zero) are different mnemonics for the same 

instruction. 

If CX≠0, CX=CX-1 and control is transferred '.o the target operand 

If CX = 0, then next sequential instruction is executed. 

Example: 

LOOPE again 

7. LOOPNE/LOOPNZ 

LOOPNE Label 

These (LOOP while Not Equal/LOOP while Not Zero) are different mnemonics for the same 

instruction. CX is decremented by 1 and control is transferred to target operand if CX is not zero and if 

ZF=0; otherwise the next sequential instruction is executed. 

Example: 

LOOPNE again 

8. JCXZ 

JCXZ Label 

This (Jump if CX register Zero) instruction transfers control to the target operand if CX=0. It is useful 

at the beginning of a loop to bypass the loop if CX=0. 

Example: 

JCXZ again 

9. INT 

INT interrupt type (0-255) 

This (Interrupt) instruction activates the interrupt procedure specified by the interrupt-type number (0-

255). The address of the interrupt pointer is calculated by multiplying the interrupt-type number by 4. 

Example : 

INT 7, INT 180 

 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

32 

10. INTO 

This (Interrupt on Overflow) instruction generates a software interrupt if the overflow flag is set. 

Otherwise, control proceeds to the following instruction without activating an interrupt procedure. 

11.IRET 

This (Interrupt on Return) instruction transfers control back to the point of interruption by popping IP, 

CS and the flags from the stack. 

IRET is used to exit any interrupt procedure, whether activated by hardware or software. 

Processor Control Instructions 

1. HLT 

This (Halt) instruction will cause the 8086 to stop fetching and executing instructions. The 8086 will enter 

a halt state. The ways to get the processor out of halt state are with (i) an interrupt signal on the INTR pin. 

(ii) An interrupt signal on the NMI pin, (iii) a reset signal on the RESET pin. 

2. WAIT 

This (Wait) instruction causes the 8086 to enter the wait state while its test line is not active. 

3. LOCK 

 The LOCK prefix  allow 8086 to make sure that another processor does not take control of the system 

bus while it is in the middle of a critical instruction which uses the system bus. 

 The LOCK prefix is put in front of the critical instruction. 

 When an instruction with a LOCK prefix executes, the 8086 will assert its bus lock signal output. This 

signal is connected to an external bus controller device which then prevents any other processor from 

taking over the system bus. 

4. ESC 

 This (Escape) instruction provides a mechanism by which other coprocessors may receive their 

instructions from the 8086 instruction stream and make use of the 8086 addressing modes. 

 The 8086 does a no operation (NOP) for the ESC instruction other than to access a memory 

operand and place it on the bus. 

5. NOP 

This (No operation) instruction causes the CPU to do nothing. NOP does not affect any flags. 

 

 

 

 



EC 8691-Microprocessor and Microcontroller  Unit-1 

 
 

33 

6. Flag operations 

Instruction Operation 

CLC Clear the carry flag (CF) 

CMC   ' Complement the carry flag (CF) 

STC Set the carry flag (CF) 

CLD Clear the direction flag (DF) 

  

STD Set the direction flag (DF) 

CLI Clear the interrupt flag (IF) 

STI Set the interrupt flag (IF) 

 

5. Assembler directives 

AUQ: Explain the assembler directives in 8086 Microprocessor. (Dec-2006,11,12, 

May2007,08,10,11,13, Dec 2016) 

 An assembler is a program used to convert an assembly language program into the equivalent 

machine code modules which may further converted into executable codes. 

Some directives such as ORG, EQU, DB, DW, etc which are common in different assemblers were 

also described. Though a representative set of directives for the 8086 assembler is presented, it is possible 

that some assemblers have a few additional directives. On the other hand, some of the directives 

presented here may not be present or may be present in different forms. 

Directives for Constant and Variable Definition 

An Intel 8086 assembly program uses different types of constants like binary, decimal, octal and 

hexadecimal. These can be represented in the program using different suffixes like B (for binary), D (for 

decimal), O (for octal) and H (for hexadecimal) to the constant. For example: 

• 10H is a hexadecimal number (equivalent to decimal 16). 

• 27O is an octal number (equivalent to decimal 23). 

• 10100B is a binary number. 

A number of directives are used to define and store different kinds of constants. 

The DB (Define Byte), DW (Define Word), DDW (Define Double Word) are described in Chapter 

The 8086 assembler uses DD as directive for double word. Some of the 8086 assemblers also provide the 

following additional directives. 

 DQ : Define Quadword 

 DT :  Define Ten Bytes 

In addition, these directives can be used to store strings and arrays. For example: 

• NAME DB "NEHA SHIKHA". The ASCII codes of alphanumeric characters specified 

within double quotes are stored. 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

34 

• NUM DB 5, 6, 10, 12, 7. The array of five numbers NUM is declared and the numbers 5, 6, 

10, 12 and 7 are stored. 

The directives DUP and EQU are used to store strings and arrays. 

DUP 

Using the DUP directive, several locations may be initialized and the values may be put in those 

locations. The format is as follows. Name Type Num DUP (value) 

For example:   TEMP DB 20 DUP (5) 

The above directive defines an array of 20 bytes in memory and each location is initialized to 5. The 

array is named TEMP. 

EQU 

The EQU directive may be used to define a data name with immediate value or another data name. It 

can also be used to equate a name to a string. For example: 

NUMB EQU 20H . 

NAME EQU “RASHMI” 

Program Location Control Directives 

The directives used for program location control in the 8086 assembler are (ORG, EVEN, ALIGN 

and LABEL. 

ORG 

The ORG directive is used to set the location counter to a particular value. For example: 

 ORG   2375H 

The location counter is set to 2375H. If it occurs in data segment, the next data storage will start 

at 2375H. If it is in code segment, the next instruction will start at 2375H. 

EVEN 

Using EVEN directive, the next data item or label is made to start at the even address boundary. The 

assembler, on encountering EVEN directive, will advance the location counter to even address boundary. 

For example: 

 EVEN TABLE DW 20 DUP (0) 

This statement declares an array named TABLE of 20 words starting from the even address. Each 

word is initialized to zero. 

 

 

 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

35 

ALIGN number 

This directive will force the assembler to align the next segment to an address that is divisible by 2, 

4, 8 or 16. The unused bytes are filled with 0 for data and NOP instruction for code. For example:  

 ALIGN 2 

It will force the next segment to the next even address. 

LENGTH 

It is an operator which is used to tell the assembler to determine the number of elements in a data 

item, such as string or array. For example: 

 MOV CX, LENGTH ARRAY 

This statement will move the length of the array to the CX register. 

OFFSET 

This operator is used to determine through the assembler, the offset of a data item from the start of 

the segment containing it. For example: 

 MOV AX, OFFSET FACT 

This statement will place in the AX register the offset of the variable FACT from the start of the 

segment. 

LABEL 

The LABEL directive is used to assign a name to the current value in the location counter. The 

location counter is used by the assembler to keep track of the current location. The value in the location 

counter denotes the distance of the current location from the start of the segment.  

 

 

Segment Declaration Directives 

These directives help in declaring various segments with specific names. The start and the end of 

segments may also be specified using this directive. The directives for segment declaration include 

SEGMENT, ENDS, ASSUME, GROUP, CODE, DATA, STACK etc. 

SEGMENT and ENDS 

The SEGMENT and ENDS directives signify the start and end of a segment.  

INST  SEGMENT 

ASSUME CS: FNST, DS: DATAW 

_________ 

_________ 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

36 

_________ 

 

INST  ENDS ASSUME 

This directive is used to assign logical segment to physical segment at any time. It tells the 

assembler as to what addresses will be in segment registers at the time of execution. For example:  

 ASSUME CS: CODE, DS: DATA, SS: STACK 

This directive tells the assembler that the CS register will store the address of the segment whose 

name is CODE, and so on. 

.CODE (Name) 

This code directive is the shortcut used in the definition of code segments. The name is optional and 

is specified if there is more than one code segment in the program. 

.DATA and .STACK 

Similar to .CODE, the .DATA and .STACK directives are shortcuts in the definition of data segment 

and stack segment, respectively. 

GROUP 

This directive is used to tell the assembler to group all the segments in one logical group segment. 

This allows the contents of all the segments to be accessed from the same segment base. For example:  

 PROG GROUP CODE, DATA 

The above statement will group the two segments CODE and DATA into one segment named 

PROG. Each segment must be declared using ASSUME statement as in the following statement.  

 ASSUME CS: PROG DS: PROG 

 

Procedure and Macro-related Directives 

The directives in this group relate to the declaration of procedures and macros along with the 

variables contained in them. The directives include PROC, ENDP, PUBLIC, MACRO,ENDM and 

EXTRN. 

PROC and ENDP 

The PROC directive is used to define the procedures. The procedure name is a must and it must 

follow the naming convention of the assembler. Along with the name of the procedure, the field NEAR 

or FAR also needs to be specified. 

The ENDP directive is used to mark the end of the procedure. Some examples are given below. 

 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

37 

FUNCT PROC FAR 

_________ 

_________ 

ENDP 

FACT PROC NEAR 

_________ 

_________ 

ENDP 

The first procedure FUNCT is in a segment which is different from where it is called. The second 

procedure FACT is in the same segment where it is called. All the statements of the procedure are 

between PROC and ENDP directives. 

 

PUBLIC 

It is very much possible that a variable is defined in one module, but is used in other modules. In 

order to facilitate the linking, such variables are declared public, using the PUBLIC directive in the 

module where they are defined. For example: 

 PUBLIC PX, PY, PZ 

MACRO and ENDM 

The MACRO directive is used to define macros in the program. The ENDM directive defines the 

end of MACRO 

Other Directives 

These directives are of general nature, or they relate to more than one group described earlier. The 

directives described include PTR, PAGE, TITLE, NAME and END. 

PTR 

The PTR is an operator used in instructions to assign a specific type to a variable or a label. The 

PTR operator can also be used to override the declared type of variable. Following is an example of the 

use of PTR directive. 

 ARRAY DW 0125H, 1630H, 9275H ... 

In the above array of words, suppose we wish to move a byte from the array, we may then simply insert 

the PTR operator as follows 

 MOV AL, BYTE PTR ARRAY 

 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

38 

PAGE 

This directive is used for listing of the assembled program. At the start of the program, the 

directive is placed to specify the maximum number of lines on a page and the maximum number of 

characters in a line to be placed for listing. An example is given below. 

 PAGE 60, 120 

The above example specifies that 60 lines are to be listed on a page with a maximum of 120 characters in 

each line. 

TITLE 

This directive is also used for the listing of the program. The title declared in this directive defines 

the title of the program and is listed in line 2 of each page of program listing. The maximum number of 

characters allowed is 60. For example: 

 TITLE PROGRAM TO FIND SQUARE ROOT 

 

NAME 

The NAME directive is used to assign a specific name to each module, when the program consists of a 

number of modules. This helps in understanding the program logic. 

END 

This is the last statement of the program and it specifies the end of the program to the assembler. 

It must be noted that not all of the above directives are used in all programs. User may deploy them 

depending on the need of the program logic. 

 

6. ASSEMBLY LANGUAGE PROGRAMS: 

1. 16-BIT ADDITION USING 8086 

MOV  DX,0000 

MOV AX,[2000] 

MOV BX,[2002] 

ADD AX,BX 

JNC L1 

INC DX 

L1   MOV[2004],AX 

MOV[2006],DX 

HLT 

2. 16-BIT SUBTRACTION USING 8086 

MOV  DX,0000 

MOV AX,[2000] 

MOV BX,[2002] 

SUB AX,BX 

JNC L1 

INC DX 

L1     MOV[2004],AX 

MOV[2006],DX 

HLT



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

39 

3. 16 BIT MULTIPLICATION USING 

8086 

MOV  DX,0000 

MOV  SI,2000 

MOV AX,SI 

MOV  CX,[2002] 

MUL   CX 

MOV   SI,2100 

MOV   [SI],AX 

MOV  [2102],DX 

HLT 

 

4. 16 BIT DIVISION USING 8086 

MOV  DX,0000 

MOV  SI,2000 

MOV AX,SI 

MOV  CX,[2002] 

DIV   CX 

MOV   SI,2100 

MOV   [SI],AX 

MOV  [2102],DX 

HLT 

 

5. 16 BIT ASCENDING ORDER USING 

8086 

MOV AX,0000H 

START   MOV CX,0005H 

MOV DX,0005H 

MOV SI,2000H 

LABEL   MOV AX,[SI] 

CMP AX,[SI+2] 

JC LOOP 

XCHG AX,[SI+2] 

XCHG AX,[SI] 

LOOP     ADD SI,0002 

LOOP LABEL 

DEC DX 

JNZ START 

HLT 

6. 16-BIT DESCENDING ORDER 

USING 8086 

MOV AX,0000 

START   MOV CX,0005 

MOV DX,0005 

MOV SI,2000 

LABEL   MOV AX,[SI] 

CMP AX,[SI+2] 

JNC LOOP 

XCHG AX, [SI+2] 

XCHG AX, [SI] 

LOOP      ADD SI, 0002 

LOOP LABEL 

DEC DX 

JNZ START 

HLT 

 

 

 

 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

40 

7. LARGEST NUMBER IN AN ARRAY 

USING 8086 

MOV CX,0004 

DEC CX 

MOV SI,2000 

MOV AX,[SI] 

LABEL  CMP AX,[SI+2] 

JNC LOOP1 

MOV AX,[SI+2] 

LOOP 1   ADD SI,0002 

LOOP LABEL 

MOV[2500],AX 

HLT 

8. SMALLEST NUMBER IN AN ARRAY 

USING 8086 

MOV CX,0004 

DEC CX 

MOV SI,2000 

MOV AX,[SI] 

LABEL CMP AX,[SI+2] 

JC LOOP1 

MOV AX,[SI+2] 

LOOP 1  ADD SI,0002 

LOOP LABEL 

MOV[2500],AX 

HLT 

9. Write a program based on 8086 

instruction set to compute the average of 

‘n’ numberof bytes stored in the 

memory.(Nov/ Dec 2012) 

 

MOV SI, 2000H 

MOV DI, 3000H 

MOV CL, [SI] 

INC SI 

MOV AX, 0000H 

ADD AL, [SI] 

JNC STEP2 

INC AH 

INC SI 

LOOP STEP1 

MOV [DI]AX 

HLT  

 

 

 

10. Write an 8086 ALP to sort the array of 

elements in ascending order.  (Apr/ May 

2011, May / June 2013) 

MOV SI, 2000H 

MOV CL,[SI] 

DEC CL 

STEP1  MOV SI,2000H 

MOV CH, [SI] 

DEC CH 

INC SI 

STEP2  MOV AL, [SI] 

INC SI 

CMP AL, [SI] 

JC STEP3 

XCHG AL, [SI] 

XCHG AL,[SI-1] 

DEC CH 

JNZ STEP2 

STEP3  DEC CL 

JNZ STEP1 

HLT 

 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

41 

11. Write an 8086 ALP to find the largest 

element in array elements.  (Apr/ May 2011) 

MOV SI.2000H 

MOV DI, 3000H 

MOV CL, [SI] 

INC SI 

MOV AL, [SI] 

DEC CL 

STEP1:  INC SI 

MOV BL, [SI] 

CMP AL, BL 

JNC STEP2: 

MOV AL, BL 

STEP2:  DEC CL 

JNZ STEP1: 

MOV [DI],AL 

HLT 

 

 

12. Write an 8086 program to convert BCD 

data to binary data. (Nov/ Dec 2010) 

MOV BX,2000H 

MOV AL,[BX] 

MOV DL,AL 

AND DL,0FH 

AND AL,F0H 

MOV CL,4 

ROA AL,CL 

MOV DH,OAH 

MUL DH 

ADD AL,DL 

MOV [BX+1],AL 

HLT 

 

7. Linking And Relocation 

Explain linking and relocation concepts in 8086 Processor. 

The DOS linking program links the different object modules of a source program and function 

library routines to generate an integrated executable code of the source program. 

 The main input to the linker is the .OBJ file that contains the object modules of the source 

programs. 

 The linker program is invoked using the following options. 

C> LINK 

or 

  C>LINK MS.OBJ 

The output of the link program is an executable file with the entered filename and .EXE 

extension. This executable filename can further be entered at the DOS prompt to execute the file. 

The linked file in binary for run on a computer is commonly known as executable file or simply 

‘.exe.’ file. After linking, there has to be re-allocation of the sequences of placing the codes before 

actually placement of the codes in the memory.  

The loader program performs the task of reallocating the codes after finding the physical RAM 

addresses available at a given instant. The DOS linking program links the different object modules of a 

source program and function library routines to generate an integrated executable code of the source 

program.  



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

42 

The loader program performs the task of reallocating the codes after finding the physical RAM 

addresses available at a given instant. The loader is a part of the operating system and places codes into 

the memory after reading the ‘.exe’ file.  

A program called locator reallocates the linked file and creates a file for permanent location of 

codes in a standard format. 

 

Segment combination 

In addition to the linker commands, the assembler provides a means of regulating the way  

segments in  different object modules are organized by the linker.  

Segments with same name are joined together by using the modifiers attached to the 

SEGMENT directives. SEGMENT directive may have the form Segment name SEGMENT 

Combination-type where the combine-type indicates how the segment is to be located within the load 

module.  

Segments that have different names cannot be combined and segments with the same name but no 

combine-type will cause a linker error. The possible combine-types are: 

PUBLIC – If the segments in different modules have the same name and combine type PUBLIC, then 

they are concatenated into a single element in the load module. The ordering in the concatenation is 

specified by the linker command. 

COMMON – If the segments in different object modules have the same name and the combine-type is 

COMMON, then they are overlaid so that they have the same starting address. The length of the common 

segment is that of the longest segment being overlaid. 

STACK – If segments in different object modules have the same name and the combine type STACK, 

then they become one segment whose length is the sum of the lengths of the individually specified 

segments. In effect, they are combined to form one large stack. 

AT – The AT combine-type is followed by an expression that evaluates to a constant which is to be the 

segment address. It allows the user to specify the exact location of the segment in memory. 

MEMORY – This combine-type causes the segment to be placed at the last of the load module. If more 

than one segment with the MEMORY combine-type is being linked, only the first one will be treated as 

having the MEMORY combine type; the others will be overlaid as if they had COMMON combine-type. 

 

 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

43 

 Access to External Identifiers 

If an identifier is defined in an object module, then it is said to be a local (or internal) identifier 

relative to the module. If it is not defined in the module but is defined in one of the other modules being 

linked, then it is referred to as an external (or global) identifier relative to the module. 

 In order to permit other object modules to reference some of the identifiers in a given module, the 

given module must include a list of the identifiers to which it will allow access. Therefore, each module 

in multi-module programs may contain two lists, one containing the external identifiers that can be 

referred to by other modules. 

  Two lists are implemented by the EXTRN and PUBLIC directives, which have the forms:  

 

where the identifiers are the variables and labels being declared or as being available to other modules. 

8. Stacks 
How stacks are accessed in 8086 processor? Explain briefly.(Dec-2007) 

The stack is a block of memory that may be used for temporarily storing the contents of the 

registers inside the CPU. It is a top-down data structure whose elements are accessed using the stack 

pointer (SP) which gets decremented by two as we store a data word into the stack and gets incremented 

by two as we retrieve a data word from the stack back to the CPU register. 

The stack is essentially Last-In-First-Out (LIFO) data segment. This means that the data which is 

pushed into the stack last will be on top of stack and will be popped off the stack first. 

The stack pointer is a 16-bit register that contains the offset address of the memory location in the 

stack segment. T Stack Segment register (SS) contains the base address of the stack segment in the  

memory. 

The Stack Segment register (SS) and Stack pointer register (SP) together address the stacktop as 

explained below: 

 

If the stack top points to a memory location 52050H, it means that the location 52050H is already 

occupied with the previously pushed data. The next 16 bit push operation will decrement the stack 

pointer by two, so that it will point to the new stack-top 5204EH and the decremented contents of SP will 

be 204EH. This location will now be occupied by the recently pushed data. 

Thus for a selected value of SS, the maximum value of SP=FFFFH and the segment can have 

maximum of 64K locations. If the SP starts with an initial value of FFFFH, it will be decremented by two 

whenever a 16-bit data is pushed onto the stack. After successive push operations, when the stack pointer 

contains 0000H, any attempt to further push the data to the stack will result in stack overflow. 

After a procedure is called using the CALL instruction, the IP is incremented to the next 

instruction. Then the contents of IP, CS and flag register are pushed automatically to the stack. The 

control is then transferred to the specified address in the CALL instruction i.e. starting address of the 

procedure. Then the procedure is executed. 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

44 

 

9. PROCEDURES & MACROS 

Macros: AUQ: Define macro. Explain how macros are constructed in ASM-86 with example.   

(Dec-2010, May2006,10,11)                                                                                                                                    

  Macros look like procedures, but they exist only until our code is compiled, after compilation all 

macros are replaced with real instructions.  If we declared a macro and never used it in out code, 

complier will simply ignore it. 

 

 

 

 

Example: 

My Macro MACRO P1,P2,P3 

MOV AX, P1 

MOV BX, P2 

MOV CX, P3 

ENDM 

Advantages of macros 

 Repeated small groups of instructions replaced by one macro 

 Errors in macros are fixed only once, in the definition. 

 Duplication of effort is reduced. 

Macro definition : 

name MACRO [parameters,..] 

 <statements> 

ENDM 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

45 

 In effect, new higher level instructions can be created 

 Programming is made easier, less error prone 

 Generally quicker in execute than subroutines. 

Disadvantages of macros 

In large programs, produce greater code size than procedures. 

When to use Macros? 

 To replaces small groups of instruction not worthy of subroutines. 

 To create a higher instruction set for specific applications. 

 To create compatibility with other computers, 

 To replace code portions which are repeated often throughout the program. 

Procedure (PROC) 

This directive marks the start and end of a procedure block called label, the statements in the block can be 

called with they CALL instruction. 

The directive PROC indicated the states of a procedure. The type of the procedure FAR of NEAR is to be 

specified after the directive, the type NEAR is used to call a procedure with is within the programmed 

module. The type FAT is used to call a procedure from some other program module. The PROC directive 

is used with ENDP directive to enclose a procedure. 

 

 

 

 

 

 

 

 

Example: 

WEST PROC FAR 

- 

- 

- 

WEST ENDP 

A procedure is a set of instructions that compute some value or take some action (such as printing or 

reading a character value). The definition of a procedure is very similar to the definition of an algorithm. 

PROC definition : 

label  PROC [ [near / far ] ] 

<Procedure instructions> 

Label ENDP 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

46 

A procedure is a set of rules to follow which, if they conclude, produce some results. An algorithm is also 

such a sequence, but an algorithm is guaranteed to terminate whereas a procedure offers no such 

guarantee. 

Nested Procedures 

The nest procedure is one procedure definition may be totally enclosed inside another. The following is 

an example of such a pair of procedures: 

OUTSIDEPROC PROC NEAR 

JMP ENDOFOUTSIDE 

INSIDEPROC PROC NEAR 

MOC AX, 0 

RET 

INSIDEPROC ENDP 

ENDOFOUTSIDE: CALL INSIDEPROC 

MOV BX, 0 

RET 

OUTSIDEPROC ENDP 

Whenever we nest one procedure within another, it must be totally contained within the nesting 

procedure. That is the PROC and ENDP statements for the nested procedure must lie between the PROC 

and ENDP directives of the outside, nesting procedure. The following is not legal. 

OUTSIDEPROC PROC NEAR 

* 

* 

* 

INSIDEPROC PROC NEAR 

* 

* 

* 

OUTSIDEPROC ENDF 

* 

* 

*INSIDEPROC ENDP 

THE OUTISDE proc AND Inside PROC procedures overlap, they are not nested. If we attempt to create 

a set of procedures like this MASM would report a “block nesting error. 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

47 

 

 

 

 

 

 

 

 

 

 

 

 

Besides fitting inside an enclosing procedure, PROC/ENDP groups must fit entirely within a segment.  

The ENDP directive must appear before the SEG ends statement since MyProc begins inside SEG. 

Therefore, procedures within segments must always take the form. 

 

 

 

 

 

Not only can we nest procedures inside other procedures and segments, but we can nest segments inside 

other procedures and segments as well. 

Difference between Macros and Procedures  

1. To use a procedure use CALL instruction is needed.  For example: CALL MyProc. 

To use a macro, just type its name. For example, my Macro. 

2. Procedure is located at some address in memory, and if use the same procedure 100 times, the 

CPU will transfer control to this part of the memory. The control will be return back to the program by 

RET Instruction. The stack is used to keep the return address. The CALL instruction takes about 3 bytes, 

so the size of the output executable file grows very insignificantly, no matter how many time the 

procedure is used. 

Macro is expanded directly in program’s code. So if use the same macro 100 times, the complier expands 

the macro 100 times, making the output executable file larger and larger, each time all instruction of a 

macro are inserted. 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

48 

3. Use stack or any general purpose registers to pass parameters to procedure. 

To pass parameters to macro, just type them after the macro name. For example :My Macro ,1.2.3 

 

4. To mark the end of the macro ENDM directive is enough. 

To mark the end of the procedure, type the name of the procedure before the ENDP directive.  

 

Differentiate procedures and macros. 

The difference between procedures and macros are given in the Table. 

S.No. PROCEDURES MACROS 

1 To use procedure use CALL and RET 

instructions are needed 

To use a macro, just type its name 

2 It occupies less memory It occupies more memory 

3 Stack is used Stack is not used 

4 To mark the end of the procedure, type the name 

of the procedure before the ENDP directive. 

To mark the end of the macro ENDM 

directive is enough 

5 Overhead time is required to call the procedure 

and return to the calling program 

No overhead time during the execution. 

 

 

10. INTERRUPTS AND INTERRUPT SERVICE ROUTINES 

AUQ: What are the interrupts in 8086? Explain interrupt related service routines.(Dec-2007,08,12, 

May-2007,08,11,12,13,15, May 2016, May 2017) 

Interrupts: 

  A signal to the processor to halt its current operation and immediately transfer control to an 

interrupt service routine is called as interrupt. Interrupts are triggered either by hardware as when the 

keyboard detects a key press, or by software, as when a program executes the INT instruction.  

 Interrupts are triggered by different hardware, these are called hardware interrupts. 

 To make a software interrupt there is an INT instruction, it has very simple syntax : INT 

Value. 

Where value can be a number between 0 to 255 (or 00 to FF h). 

Interrupt Service Routings (ISRs) 

IST is a routing that receives processor control when a specific interrupt occurs. 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

49 

The 8086 will directly call the service routing for 256 vectored interrupts without any software 

processing. This is in contrast to non vectored interrupts that transfer control directly to a single interrupt 

service routine, regardless of the interrupt source. 

The 8086 provides a 256 entry interrupt vector table beginning at address 0:0 in memory. This is a 1K 

table containing 256 4-byte entries. Each entry in the table contains a segmented address that points at the 

interrupt service routing in memory. Generally, interrupts referred by their index into this table, so 

interrupt zero’s address (vector) is at memory location 0:0 interrupt one’s vector is at address 0:4, 

interrupt two’s vector is at address 0:8, etc. 

Interrupt vector table: 

It is a table maintained by the operating system. It contains addresses (vectors) of current interrupt 

service routine. When an interrupt occurs, the CPU branches to the address in the table that corresponds 

to the interrupt’s number. 

When an interrupt occurs,  regardless of source, the 8086 does the following : 

1. The CPU pushes the flags register onto the stack. 

2. The CPU pushes a far return address (segment: offset) onto the stack, segment value first.  

3. The CPU determines the cause of the interrupt (i.e, the interrupt number) and fetches the 

four byte interrupt vector from address 0 : vector x 4 (0:0, 0;4, 0:8 etc) 

4. The CPU transfers control to the routine specific by the interrupt vector table entry. 

After the completion of these steps, the interrupt service routine takes control. When the interrupt service 

routine wants to return control, it must execute an IRET (interrupt return) instruction. The interrupt return 

pops the far return address and the flags of the stack. 

 Available Interrupt 

pointers (224) 

3FFH Type  255 pointer 

 (Available) 

 : 

 : 

080H Type 32 pointer 

 (Available) 

Reserved Interrupts 

(27) 

07FH Type  31 pointer 

 (Reserved) 

  

 ; 

 Type 5 pointer 

(Reserved) 

Dedicated Interrupt 

Pointers(6) 

                 

014H 

Type 4 pointer 

overflow 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

50 

010h Type 3 pointer 

1Byte INT instruction 

  00CH Type 2 Pointer 

NonMaskable 

  008H 

 

TYPE 1 Pointer 

Single step 

CS Base address  004H TYPE 0 Pointer 

Divide by zero IP offset  000H 

 

 Types of Interrupts : 

1. Hardware Interrupt – External used INTR and NMI 

2. Software Interrupt – Internal – from INT or INTO 

3. Processor Interrupt – Traps and 10 Software Interrupts 

External – generated outside the CPU by other hardware, (INTR, NMI) 

Internal – generated within CPU as a result of an instruction of operation (INT, INTO, Divide error and 

single step) 

 

 

 

 

 

 

 

 

 

 

Dedicated Interrupts: 

(i) Divide Error Interrupt (Type 0) 

This interrupt occurs automatically following the execution of DIV or IDIV instruction when the 

quotient exceeds the maximum value that the division instruction allows. 

(ii) Single Step Interrupt (Type 1) 

This interrupt occurs automatically after execution of each instruction when the Trap Flag (TF) is set 

of 1. It is used to execute programs one instruction at a time, after which an interrupt is requested. 



EC6504-Microprocessor and Microcontroller  Unit-1 

 
 

51 

Following the ISR, the next instruction is executed and another single stepping interrupt request 

occurs. 

(iii)Non Maskable Interrupt (Type 2) 

It is the highest priority hardware interrupt that triggers on the positive edge. This interrupt occurs 

automatically when it received a low-to-high transition on its NMI input pin. This interrupt cannot be 

disabled or masked. It is used to save program data or processor status in case of system power 

failure. 

(iv) Breakpoint Interrupt (Type 3) 

This interrupt is used to set break point is software debugging programs. 

(v) Overflow Interrupt (Type 4) 

This interrupt is initiated by INTO (Interrupt on Overflow) instruction. It is used to check overflow 

condition after any signed arithmetic operation in the system. The overflow flag (OF) will be set if 

the signed arithmetic operation generates a result whose size is larger than the size of destination 

register or memory location. At this time overflow interrupt is used to indicate an error condition. 

Software Interrupts (INT n) 

The software interrupts are non maskable interrupts. They are higher priority than hardware 

interrupts. 

The software interrupts are called within the program using the instruction INT n. Here ‘n’ means 

value and is in the range of 0 to 255. These interrupts are useful for debugging, testing ISRs and 

calling procedures. 

Hardware Interrupts 

INTR and NMI are called hardware interrupts. INTR is maskable and NMI is non maskable 

interrupts. 

INTR interrupts (type 0-255) can be used to interrupt a program execution. This interrupt is 

implemented by using two pins: INTR and INTA. This interrupts can be enabled or disabled by STI 

(IF=1) or (IF=0) respectively. 

Interrupt Priority 

The priority of interrupts of 8086 is shown in Table. The software interrupts except single step 

interrupt have the highest priority; followed by NMI, followed by INTR. Single step interrupt has the 

least priority. The 8086 checks for internal interrupts before for any hardware interrupt. Therefore 

software interrupts have higher priority than hardware interrupts. 

 

Interrupt Priority 

INT n, INT 0, Divide Error 

NMI 

 

INTR 

 

Single Step 

Highest 

 

 

 

 

Lowest 

 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

1 

UNIT-II 

8086 SYSTEM BUS STRUCTURE 
8086 signals – Basic configurations – System bus timing –System design using 8086 – IO 

programming – Introduction to Multiprogramming – System Bus Structure - Multiprocessor 

configurations – Coprocessor, Closely coupled and loosely Coupled configurations – Introduction to 

advanced processors.  

 

 The 8086 Microprocessor is a 16-bit CPU. 

 Available clock rates: 5, 8 and 10MHz 

 Packages: 40 pin CERDIP or plastic package 

 Operates in single processor or multiprocessor configurations  

 Modes of operation: Minimum mode (single processor mode) and Maximum mode 

(multiprocessor mode) configuration. 

 

SIGNAL DESCRIPTION OF 8086 

AUQ: Explain the signal used in 8086 processor. (Dec 2003,06,07,09,10,13, May 2006,07,08,09,11) 

The 8086 signals can be categorized in three groups. 

 Signals having common function in minimum and maximum mode. 

 Signals having special functions in minimum mode 

 Signals having special functions in maximum mode 

PIN DIAGRAM 

 

 

 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

2 

Signals having common function in minimum and maximum mode 

 

AD15 – AD0 

 These are time multiplexed address and data lines. They act as address lines during first part of 

machine cycle and data lines in later part. 

A19 / S6 – A16 / S3 

 These are time multiplexed address and status lines. They act as address lines during first part of 

machine cycle and status lines in later part. 

 These are most significant address lines for memory operations. During I/O operations these lines are 

low. 

 The status signals S4 and S3 indicate which segment registers is being used for memory access. 

 The status of interrupt enable flag bit will be displayed on S5. 

 The status line S6 is always low. 

S4 S3 Indications 

0 0 ES 

0 1 SS 

1 0 CS 

1 1 DS 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

3 

- Bus high enable/ status 

 Low signal on  indicates access to higher order memory banks, otherwise access is to only lower 

order memory banks. 

  and A0 decide the memory bank and type of access. 

 S7 has no function. 

 A0 Indications 

0 0 Both higher and lower order banks for word read/ write 

0 1 Higher order bank for byte  read/ write 

1 0 Lower  order bank for byte  read/ write 

1 1 None 

 

 Read control signal 

  is low when 8086 is receiving the data from memory or I/O. 

READY 

 Wait state request signal. 

 A HIGH on READY input causes the 8086 to extend the machine cycle by inserting wait states. 

 

 This input is examined by WAIT instruction. 

 If the  input goes low, execution will continue, else, the processor remains in idle state. 

INTR 

 This is level triggered input. 

 INTR is sampled during the last clock cycle of each instruction to determine the availability of 

request. 

 These interrupts can be masked internally by resetting the interrupt enable flag. 

NMI 

 NMI (Non-Maskable interrupt) is positive edge triggered non-maskable interrupt request. 

CLK 

 CLK is clock signal from external crystal oscillator. 

 8086 requires clock signal with 33% duty cycle. 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

4 

RESET 

 System reset signal must be high for atleast 4 clock periods to cause reset. 

 Reset operation takes about 10 clock periods. 

VCC 

 +5V supply with ±5% tolerance. 

GND 

 Ground for internal circuits. 

 

 High on this pin selects minimum mode and low signal selects maximum mode. 

Signals having special functions in minimum mode 

 

ALE 

 Address latch enable. 

 High on this pin indicates valid address on address/data bus. 

 

 Write control signal. 

 is low when 8086 sends the data to memory or I/O. 

 

  = High, indicates memory access. 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

5 

  = low, indicates I/O access. 

 

   is the acknowledgement for the interrupt request on INTR pin. 

 It is pulsed low in two consecutive bus cycles. 

 First pulse indicates interrupt acknowledgement. 

 During second pulse, external logic puts the interrupt type on data bus. 

 

 Data transmit/receive. 

 This signal, when high indicates data is being transmitted by 8086. 

 The low signal indicates that 8086 is receiving the data. 

 

 Data bus enable. 

 This signal, when low indicates that the 8086 processors address/data bus is used as data bus. 

 It is used to enable data buffers. 

HOLD 

 HOLD signal when high indicates another master has requested for direct memory access. 

 When HOLD becomes low, it indicates that direct memory access is no more required. 

HLDA 

 The microprocessor sends high signal on HLDA to indicate acknowledgement of DMA request. It 

then tristates the buses and control. 

 When HOLD becomes low, the microprocessor makes HLDA low and regains the control of buses. 

Signals having special functions in maximum mode 

 

 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

6 

 

 This signal indicates that an instruction with lock prefix is being executed and the bus is not to be 

used by any other processor. 

 

 

 In maximum mode DMA request is received and acknowledged using these signals. 

has highest priority compared to  

 

 

 These are the status lines which indicate the type of operation being carried out by the processor. 

   Control functions 

0 0 0 Interrupt acknowledge 

0 0 1 I/O read 

0 1 0 I/O write 

0 1 1 Halt 

1 0 0 Opcode fetch 

1 0 1 Memory read 

1 1 0 Memory write 

1 1 1 No operation 

 

 These two signals are decoded to provide instruction queue status. 

  Indications 

0 0 Queue is in idle state 

0 1 First byte of opcode has entered queue 

1 0 Queue empty 

1 1 Subsequent byte of opcode has entered queue 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

7 

 

Basic configurations :  

1. Minimum Mode configuration: 

AUQ: Explain with neat diagram minimum mode configuration of 8086 system. (Dec 2006,08,   

May 2006,07) 

 A processor is in minimum mode when its MN / /MX pin is strapped to +5V. In a minimum mode 8086 

system, the microprocessor 8086 is operated in minimum mode by strapping its MN/MX pin to logic 1. 

 In this mode, all the control signals are given out by the microprocessor chip itself.  

 There is a single microprocessor in the minimum mode system.   

 The remaining components in the system are latches, transreceivers, clock generator, memory and I/O 

devices. Some type of chip selection logic may be required for selecting memory or I/O devices, 

depending upon the address map of the system. 

 Latches are generally buffered output D-type flip-flops like 74LS373 or 8282.  

 They are used for separating the valid address from the multiplexed address/data signals and are 

controlled by the ALE signal generated by 8086.   

 Transreceivers are the bidirectional buffers and sometimes they are called as data  

       amplifiers. They are required to separate the valid data from the time multiplexed address/data  

       signals.  

 They are controlled by two signals namely, DEN and DT/R. 

 The DEN signal indicates the direction of data, i.e. from or to the processor. The system contains memory 

for the monitor and users program storage. 

 The clock generator generates the clock from the crystal oscillator and then shapes it and divides to make 

it more precise so that it can be used as an accurate timing reference for the system. 

 The clock generator also synchronizes some external signal with the system clock. The general system 

organisation is as shown in below fig. 

 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

8 

 
 

 

 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

9 

2. Maximum Mode configuration: 

AUQ: Explain with neat diagram maximum mode configuration of 8086 system. (Dec 2007) 

A processor is in maximum mode when its MN / /MX pin is grounded. The maximum mode 

definitions of pins 24 through 31 are given in table and a typical maximum mode configuration is shown 

in Fig. 

The circuitry is for converting the status bits /S0, /S1 and /S2 into the I/O and memory transfer 

signals needed to direct data transfers and for controlling the 8282 latches and 8286 transceivers.  

It is normally implemented with an Intel 8288 bus controller. Also included in the system is an 

interrupt priority management device: however, its presence is optional.  

 In the maximum mode, there may be more than one microprocessor in the system configuration. 

The components in the system are same as in the minimum mode system. 

 The basic function of the bus controller chip IC8288, is to derive control signals like RD and WR ( 

for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the 

status lines. 

 The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by  

CPU. The process to be activated for this combination is listed below. 

 It derives the outputs ALE, DEN, DT/R, MRDC, MWTC,AMWC, IORC, IOWC and AIOWC. The 

AEN, IOB and CEN pins are specially useful for multiprocessor systems. 

 AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance of the 

MCE/PDEN output depends upon the status of the IOB pin. 

 If IOB is grounded, it acts as master cascade enable to control cascade 8259A, else it acts as peripheral 

data enable used in the multiple bus configurations. 

The HOLD and HLDA pins become the /RQ / /GT0 and /RQ / /GT1 pins. Both bus requests and bus 

grants can be given through each of these pins. They are exactly the same except that if requests are seen 

on both pins at the same time, then one on /RQ / /GT0 is given higher priority. A request consists of a 

negative puls arriving before the start of the current bus cycle. The grant is negative puls that is issued at 

the beginning of the current bus cycle provided that:  

1. The previous bus transfer was not the low byte of a word to or from an odd address if the CPU is 

an 8086. For 8088, regardless of the address alignment the grant signal will not be sent until 

second byte of a word reference is accessed.  

2. The first pulse of an interrupt acknowledgement did not occure during the previous bus cycle.  

3. An instruction with a LOCK prefix is not being executed.  

4. If condition 1 or 2 is not met, then the grant will not be given until the next bus cycle and if 

condition 3 is not met, the grant will wait until the locked instruction is completed. In response to 

the grant the three-state pins are put in their high-impedance state and the next bus cycle will be 

given to the requesting master.  



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

10 

 

 
Read Write Timing Diagram 

AUQ: Draw and explain the timing diagram of different cycle in 8086 processor. (Dec 2007,      

May 2009,13, Dec 2016, May 2017) 

 The typical sequence of bus cycles is shown below; 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

11 

 

Bus timing for Minimum Mode:  

 The opcode fetch and read cycles are similar. Hence the timing diagram can be categorized in two parts, the 

first is the timing diagram for read cycle and the second is the timing diagram for write cycle. 

 The read cycle begins in T1 with the assertion of address latch enable (ALE) signal and also M / IO signal. 

During the negative going edge of this signal, the valid address is latched on the local bus. 

 The BHE and A0 signals address low, high or both bytes. From T1 to T4 , the M/IO signal indicates a 

memory or I/O operation.• At T2, the address is removed from the local bus and is sent to the output. The 

bus is then tristated. The read (RD) control signal is also activated in T2. 

 The read (RD) signal causes the address device to enable its data bus drivers. After RD goes low, the valid 

data is available on the data bus. 

 The addressed device will drive the READY line high. When the processor returns the read signal to high 

level,the addressed device will again tristate its bus drivers. 

 

                 

 Figure:Readcycle timing diagarm of  minimum mode8086 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

12 

 

 

Figure: Write cycle timing diagarm of  minimum mode8086 

 A write cycle also begins with the assertion of ALE and the emission of the address. The M/IO signal is again 

asserted to indicate a memory or I/O operation. In T2, after sending the address in T1, the processor sends the 

data to be written to the addressed location. 

 The data remains on the bus until middle of T4 state. The WR becomes active at the beginning of T2 (unlike RD 

is somewhat delayed in T2 to provide time for floating). 

 The BHE and A0 signals are used to select the proper byte or bytes of memory or I/O word to be read or write. 

 The M/IO, RD and WR signals indicate the type of data transfer as specified in table below. 

 

 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

13 

 

Bus Timing for Maximum Mode: 

 The maximum mode system timing diagrams are divided in two portions as read (input) and write (output) 

timing diagrams. 

 The address/data and address/status timings are similar to the minimum mode. 

 ALE is asserted in T1, just like minimum mode. The only difference lies in the status signal used and the 

available control and advanced command signals. 

 Here the only difference between in timing diagram between minimum mode and maximum mode is the 

status signals used and the available control and advanced command signals. 

 R0, S1, S2 are set at the beginning of bus cycle.8288 bus controller will output a pulse as on the ALE and 

apply a required signal to its DT / R pin during T1. 

 In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate MRDC or IORC. 

These signals are activated until T4. For an output, the AMWC or AIOWC is activated from T2 to T4 and 

MWTC or IOWC is activated from T3 to T4. 

 The status bit S0 to S2 remains active until T3 and become passive during T3 and T4. 

 If reader input is not activated before T3, wait state will be inserted between T3 and T4. 

 

                       

                   Figure:Memory read timing diagram in maximum mode 

 

 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

14 

 

                    

                Figure: Memory write timing diagram in maximum mode 

 

 

 

IO programming 

With example explain the input output program concepts in 8086. 

On the 8086, all programmed communications with the I/O ports is done by the IN and 

OUT instructions defined in Fig. 6-2. 

IN and OUT instructions 

Name   Mnemonic and Format   Description 

Input 

Long form, byte  IN AL, PORT     (AL) <- (PORT) 

Long form, word  IN AX, PORT    (AX) <- (PORT+1: PORT) 

Short form, byte  IN AL, DX     (AL) <- ((DX)) 

Short form, word  IN AX, DX     (AX) <- ((DX) + 1: (DX)) 

Output 

Long form, byte  OUT PORT, AL    (PORT) <- (AL) 

Long form, word  OUT PORT, AX    (PORT+1: PORT) <- (AX) 

Short form, byte  OUT DX, AL     ((DX)) <- (AL) 

Short form, word  OUT DX, AX     ((DX)+1: (DX)) <- (AX) 

Note: PORT is a constant ranging from 0 to 255 

Flags: No flags are affected 

Addressing modes: Operands are limited as indicated above. 

 

If the second operand is DX, then there is only one byte in the instruction and the contents of DX 

are used as the port address.  

Unlike memory addressing, the contents of DX are not modified by any segment register. This 

allows variable access to I/O ports in the range 0 to 64K. The machine language code for the IN 

instruction is: 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

15 

 
 

 

Although AL or AX is implied as the first operand in an IN instruction, either AL or AX must be 

specified so that the assembler can determine the W-bit.  

Similar comments apply to the OUT instruction except that for it the port address is the 

destination and is therefore indicated by the first operand, and the second operand is either AL or AX. Its 

machine code is: 

 
Note that if the long form of the IN or OUT instruction is used the port address must be in the 

range 0000 to 00FF, but for the short form it can be any address in the range 0000 to FFFF (i.e. any 

address in the I/O address space). Neither IN nor OUT affects the flags.  

The IN instruction may be used to input data from a data buffer register or the status from a 

status register. The instructions 

IN AX, 28H 

MOV DATA_WORD, AX 

would move the word in the ports whose address are 0028 and 0029 to the memory location 

DATA_WORD. 

PROGRAMMED I/O 

Programmed I/O consists of continually examining the status of an interface and performing an 

I/O operation with the interface when its status indicates that it has data to be input or its data-out buffer 

register is ready to receive data from the CPU. 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

16 

 

 

As a more complete example, suppose a line of characters is to be input from a terminal to an 82-

byte array beginning at BUFFER until a carriage return is encountered or more then 80 characters are 

input. If a carriage return is not found in the first 81 characters then the message "BUFFER 

OVERFLOW" is to be output to the terminal; otherwise, a line feed is to be automatically appended to 

the carriage return.  

Because the ASCII code is a 7-bit code, the eighth bit, bit 7, is often used as parity bit during the 

transmission from the terminal. Let us assume that bit 7 is set according to even parity and if an odd 

parity byte is detected, a branch is to be made to ERROR. If there is no parity error, bit 7 is to be cleared 

before the byte is transferred to the memory buffer.  

INTERRUPT I/O 

Even though programmed I/O is conceptually simple, it can waste a considerable amount of time 

while waiting for ready bits to become active. In the above example, if the person typing on the terminal 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

17 

could type 10 characters per second and only 10 µs is required for the computer to input each character, 

then approximately  

 
of the time is not being utilized.  

Before an 8086 interrupt sequence can begin, the currently executing instruction must be completed 

unless the current instruction is a HLT or WAIT instruction.  

For a prefixed instruction, because the prefix is considered as part of the instruction, the interrupt 

request is not recognized between the prefix and the instruction.  

In the case of the REP instruction, the interrupt request is recognized after the primitive operation 

following the REP is completed, and the return address is the location of the REP prefix.  

For MOV and POP instructions in which the destination is a segment register, an interrupt request is 

not recognized until after the instruction following the MOV or POP instruction is executed. 

For the 8086, once the interrupt request has been recognized, the interrupt sequence consists of:  

1. Establishing a type N.  

2. Pushing the current contents of the PSW, CS and IP onto the stack (in that order).  

3. Clearing the IF and TF flags.  

4. Putting the contents of the memory location 4*N into the IP and the contents of 4*N+2 into the 

CS.  

Thus, an interrupt causes the normal program sequence to be suspended and a branch to be made to 

the location indicated by the double word beginning at four times the type (i.e. the interrupt pointer). 

Control can be returned to the point at which the interrupt occurred by placing an IRET instruction at the 

end of the interrupt routine.  

It was mentioned that there are two classes of interrupts, internal and external interrupts, with external 

interrupts being caused by a signal being sent to the CPU through one of its pins, which for the 8086 is 

either the NMI pin or the INTR pin.  

An interrupt initiated by a signal on the NMI pin is called a nonmaskable interrupt and will cause a 

type 2 interrupt regardless of the setting of the IF flag. Nonmaskable interrupt signals are normally 

caused by circuits for detecting catastrophic events.  

An interrupt on the INTR pin is masked by the IF flag so that this flag is 0 the interrupt is not 

recognized until IF returns to 1.  

When IF=1 and a maskable external interrupt occures, the CPU will return an acknowledgment signal 

to the device interface through its /INTA pin and initiate the interrupt sequence. 

 The acknowledgment signal will cause the interface that sent the interrupt signal to send to the CPU 

(over the data bus) the byte which specifies the type and hence the address of the interrupt pointer. The 

pointer, in turn, supplies the beginning address of the interrupt routine.  



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

18 

There are several ways of combining with interrupt I/O, some involving only software, some only 

hardware, and some a combination of the two. Let us consider the following means of giving priority to 

an interrupt system:  

1. Polling  

2. Daisy chaining  

3. Interrupt priority management hardware  

By putting a program sequence (similar to the one in Fig.6-7) at the beginning of the interrupt routine, 

the priority of the interfaces could be established by the order in which they are polled by the sequence.  

Daisy chaining is a simple hardware means of attaining a priority scheme. It consists of associating a 

logic circuit with each interface and passing the interrupt acknowledge signal through these circuits as 

shown in Fig.(a). The details of daisy chain logic are shown in Fig.6-14(b). The priority of an interface is 

determined by its position on the daisy chain. The closer it is to the CPU the higher its priority.  

 

 

 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

19 

BLOCK TRANSFERS AND DMA 

The activity involved in transferring a byte or word over the system bus is called a bus cycle. The 

execution of an instruction may require more than one bus cycle. For example the instruction:  

 MOV AL, TOTAL 

would use a bus cycle to bring in the contents of TOTAL in addition to the cycle needed to fetch the 

instruction. 

During any given bus cycle one of the system components connected to the system bus is given 

control of the bus. This component is said to be the master during that cycle and the component it is 

communicating with is said to be the slave.  

The 8086 receives bus requests through its HOLD pin and issues grants from its hold 

acknowledge (HLDA) pin. A request is made when a potential master sends a 1 to the HOLD pin. 

Normally, after the current bus cycle is complete the 8086 will respond by putting a 1 on the HLDA pin.  

During a block input byte transfer the following sequence occurs as the datum is sent from the 

interface to the memory:  

1. The interface sends the controller a request for DMA service  

2. The controller gains control of the bus  

3. The contents of the address register are put on the address bus  

4. The controller sends the interface a DMA acknowledgment which tells the interface to put data on 

the data bus (For an output it signals the interface to latch the next data placed on the bus)  

5. The data byte is transferred to the memory location indicated by the address bus  

6. The controller relinquishes the bus  

7. The address register is incremented by 1  

8. The byte count register is decremented by 1  

9. If the byte count register is nonzero return to step 1; otherwise stop  

The controller/interface design shows bidirectional address lines connected to the controller and only 

unidirectional address lines going to the interface.  

 

Multiprocessor Systems 

Explain the different configurations of multiprocessor systems. (May 2008) 

Multiprocessor Systems refer to the use of multiple processors that execute instructions 

simultaneously and communicate using mailboxes and semaphores Maximum mode of 8086 is designed 

to implement 3 basic multiprocessor configurations: 

1. Coprocessor (8087) 

2. Closely coupled (dedicated I/O processor: 8089) 

3. Loosely coupled (Multi bus) 

Coprocessors and closely coupled configurations are similar - both the CPU and the external 

processor share: 

 Memory 

 I/O system 

 Bus & bus control logic 

 Clock generator 

 

 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

20 

 Multiprocessor configuration 

         Discuss about the multiprocessor system of 8086. 

Explain multiprocessor system.     (June 2016, Dec 2016) 

Introduction: 

Multiprocessor Systems refer to the use of multiple processors that execute instructions simultaneously and 

communicate using mailboxes and semaphores. 

 

Maximum mode of 8086 is designed to implement 3 basic multiprocessor configurations: 

1. Coprocessor (8087) 

2. Closely coupled (8089) 

               3. Loosely coupled (Multibus)  

     Need for Multiprocessor system 

1. Due to limited data width and lack of floating point arithmetic instructions, 8086 requires many 

instructions for computing even single floating point operations. For this Numeric data processor 

8087 is used. 

2. Some processor like DMA processor can take care of low level operations , while the 8086 CPU 

execute high level operations.   

Advantages of Multiprocessor  

 Easy to add more processor for expansion as per requirement 

 When failure occurs, it is easier to replace the faulty processor 

 Avoiding the expense of unneeded capabilities of a centralized system by combining several low 

cost processor. 

 

6.Explain how co processor works and interacts with 8086 .    (June 2016) 

Coprocessor configuration 

Coprocessors and closely coupled configurations are similar in that both the CPU and the external processor 

share: 

 Memory 

 I/O system 

 Bus & bus control logic  

 Clock generator 

WAIT instruction allows the processor to synchronize itself with external hardware, eg., waiting for 

8087 math co-processor. When the CPU executes WAIT waiting state. 

TEST input is asserted (low), the waiting state is completed and execution will resume. ESC 

instruction: ESC opcode, operand, opcode: immediate value recognizable to a coprocessor as an 

instruction opcode  

 

Coprocessor cannot take control of the bus, it does everything through the CPU. 

 8089 shares CPU and clock and bus control logic 

 It communication with host CPU is by  the way of shared memory 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

21 

 The host sets up a message (command) in memory 

 The independent processor interrupts host on completion. 

Co processor adds instruction to the instruction set. An instruction to be executed by the co- processor 

           is indicated by an escape (ESC) prefix or instruction.  

 

                      Figure: Flow diagram of coprocessor 

 

The steps to be followed during the program execution of co processor are 

1. The 8086 fetches the instruction 

2. The co processor monitors the instruction sequence and captures its own instructions. 

3. The ESC is decoded by the CPU and coprocessor simultaneously. 

4. The CPU computes the 20 bit address of memory operand   and does a dummy read. The co 

processor captures the address of the data and obtains control of the bus to load or store as 

needed. 

5. The co processor sends  BUSY (high) to the TEST pin 

6. The CPU goes to the next instruction and if this is an 8086 instruction, the CPU and coprocessor 

execute in parallel. 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

22 

7. If another coprocessor instruction occurs, the 8086 must wait until BUSY goes low.ie TEST pin 

become active. To implement this, a WAIT instruction is put in front of most 8087 instructions by 

the assembler. 

8. The WAIT instruction does the operations ie wait until the TEST pin is active. 

9. The co processor  also makes use of Queue status.  

 

********************************************************************* 

7. Explain the closely coupled configuration of 8086 with example 

. Closely Coupled Configuration: 

 

                The main difference between co processor and closely coupled configuration is   no special instruction 

such as WAIT and ESC is used. The communication between 8086 and independent processor is done through 

memory space. 

        NOTE: Closely Coupled processor may take control of the bus independently. Two 8086’s cannot be closely 

coupled. 

 

                                Figure: closely coupled configuration 

  The 8086 sets up a message in memory and wakes up independent processor by sending 

command to one of its ports. The independent processor then accesses the memory to execute the task in 

parallel with the 8086.When task is completed the external processor informs the 8086 about the completion of 

task by using either a status bit or an interrupt request. 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

23 

                                      

                                     Figure:Interaction between  8086 and 8089 

            

************************************************************************* 

8. Write brief note on 8086 loosely coupled system configuration. (April 2006, May 2017) 

Loosely Coupled Configuration:  

 

 In loosely coupled configuration a number of modules of 8086 can be interfaced through a common system 

bus to work as a multiprocessor system.  

 Each module in the loosely coupled configuration is an independent microprocessor based system with its 

own clock source, and its own memory and 1 0  devices interfaced through a local bus.  

 Each module can also be a closely coupled configuration of a processor or coprocessor. The block 

diagram of a loosely coupled configuration of 8086 is shown in figure 

 

 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

24 

 
                        Fig  loosely coupled configuration 

 

 

 

 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

25 

Advantages: 

1. Better system throughput by having more than one processor. 

2. The system can be expanded in modular form. Each processor is an independent unit and normally 

on a separate PC board. One can be added or removed without affecting the others in the system. 

3. A failure in one module normally does not affect the breakdown of the entire system and faulty module 

can be easily detected and replaced. 

        4. Each processor may have its own local bus to access dedicated memory or I/O devices so that a greater 

degree of parallel processing can be achieved 

Disadvantages 

1. Bus Arbitration (contention): Make sure that only 1 processor can access the bus at any given time 

2. It  must synchronize local and system clocks for synchronous transfer 

3. It requires control chips to tie into the system bus. 

 

*************************************************************************   

9.Explain the basic bus access control and arbitration schemes used in multiprocessor systems. 

                                                                                                                                          (dec 2008) 

 Bus allocation schemes: 

 It  needs some kind of priority allocation.  

 It output a Bus Request (BRQ)  to request the bus  and BRQ line goes to some controller. 

 The CPU  input a Bus Grant (BGR) to gain access to bus  

 The  Bus access logic  output a Bus Busy >BBSY= signal to hold the bus. 

 To allocate the bus various methods are available.They are 

 Daisy Chaining 

 Polling 

 Independent Priority 

Daisy Chaining: 

      Need a bus controller to monitor bus busy and bus request signals 

 It does not require any priority resolving network, rather the priorities of all the devices are 

essentially assumed to be in sequence. 

 All the masters use a single bus request line for requesting the bus access.  

 The controller sends a bus grant signal, in response to the request, if the busy signal is inactive 

when the bus is free.  

 The bus grant pulse goes to each of the masters in the sequence till it reaches a requesting master. 

 The master then receives the grant signal, activates the busy line and gains the control of the bus. 

 The priority is decided by the position of the requesting master in the sequence. 

 

 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

26 

 

 

Polling: 

 In polling schemes, a set of address lines is driven by the controller to address each of the masters in 

sequence.  

 When a bus request is received from a device by the controller, it generates the address on the address 

lines. 

 If the generated address matches with that of the requesting masters, the controller activates the BUSY 

line. 

 

 
 

Independent Priority 

 In independent priority scheme each master has a pair of Bus request and Bus grant line and each pair has 

a priority assigned to it. 

 The built in priority decoder within the controller selects the highest priority request a asserts the 

corresponding bus grant signal. 

 Synchronization of the clocks must be performed once a Master is recognized. 

 Master will receive a common clock from one side and pass it to the controller which will derive a clock 

for transfer. 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

27 

 Due to separate pairs of bus request and bus grant signals, arbitration is fast. 

 

 

 

Introduction to Advanced processors: 80286 Microprocessor 

Salient Features of 80286 

The 80286 is the first member of the family of advanced microprocessors with memory management 

and protection abilities. The 80286 CPU, with its 24-bit address bus is able to address 16 Mbytes of 

physical memory. Various versions of 80286 are available that runs on 12.5 MHz, 10 MHz and 8 MHz 

clock frequencies. 80286 is upwardly compatible with 8086 in terms of instruction set. 

80286 has two operating modes namely real address mode and virtual address mode. In real address 

mode, the 80286 can address upto 1Mb of physical memory address like 8086. In virtual address mode, it 

can address up to 16 Mb of physical memory address space and 1 GB of virtual memory address space. 

The instruction set of 80286 includes the instructions of 8086 and 80186. 80286 has some extra 

instructions to support operating system and memory management. In real address mode, the 80286 is 

object code compatible with 8086. In protected virtual address mode, it is source code compatible with 

8086. The performance of 80286 is five times faster than the standard 8086. 

Need for Memory Management 
The part of main memory in which the operating system and other system programs are stored is 

not accessible to the users. It is required to ensure the smooth execution of the running process and also 

to ensure their protection. The memory management which is an important task of the operating system is 

supported by a hardware unit called memory management unit. 

Swapping in of the Program 

Fetching of the application program from the secondary memory and placing it in the physical 

memory for execution by the CPU. 

Swapping out of the executable Program 

Saving a portion of the program or important results required for further execution back to the 

secondary memory to make the program memory free for further execution of another required portion of 

the program. 

Concept of Virtual Memory 

Large application programs requiring memory much more than the physically available 16Mbytes 

of memory, may be executed by diving it into smaller segments. Thus for the user, there exists a very 

large logical memory space which is not actually available. Thus there exists a virtual memory which 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

28 

does not exist physically in a system. This complete process of virtual memory management is taken care 

of by the 80286 CPU and the supporting operating system. 

Internal Architecture of 80286 

Register Organization of 80286 

The 80286 CPU contains almost the same set of registers, as in 8086, namely 

1. Eight 16-bit general purpose registers 

2. Four 16-bit segment registers 

3. Status and control registers 

4.Instruction Pointer 

  

 

 
D2, D4, D6, D7 and D11 are called as status flag bits. The bits D8 (TF) and D9 (IF) are used for controlling 

machine operation and thus they are called control flags. The additional fields available in 80286 flag 

registers are: 

1. IOPL - I/O Privilege Field (bits D12 and D13) 

2. NT - Nested Task flag (bit D14) 

3. PE - Protection Enable (bit D16) 

4. MP - Monitor Processor Extension (bit D17) 

5. EM - Processor Extension Emulator (bit D18) 

6. TS – Task Switch (bit D19) 

Protection Enable flag places the 80286 in protected mode, if set. This can only be cleared by 

resetting the CPU. If the Monitor Processor Extension flag is set, allows WAIT instruction to generate a 

processor extension not present exception. 

Processor Extension Emulator flag if set, causes a processor extension absent exception and 

permits the emulation of processor extension by the CPU.  

Task Switch flag if set, indicates the next instruction using extension will generate exception 7, 

permitting the CPU to test whether the current processor extension is for the current task. 

Machine Status Word (MSW) 

The machine status word consists of four flags – PE, MO, EM and TS of the four lower order bits 

D19 to D16 of the upper word of the flag register. The LMSW and SMSW instructions are available in 

the instruction set of 80286 to write and read the MSW in real address mode. 

Internal Block Diagram of 80286 

The CPU contain four functional blocks 

1. Address Unit (AU), 2. Bus Init (BU) 

3. Instruction Unit (IU), 4. Execution Unit (EU) 

The address unit is responsible for calculating the physical address of instructions and data that 

the CPU wants to access. Also the address lines derived by this unit may be used to address different 

peripherals. The physical address computed by the address unit is handed over to the bus unit (BU) of the 

CPU. Major function of the bus unit is to fetch instruction bytes from the memory. Instructions are 

fetched in advance and stored in a queue to enable faster execution of the instructions. 

 The bus unit also contains a bus control module that controls the prefetcher module. These 

prefetched instructions are arranged in a 6-byte instructions queue. The 6-byte prefetch queue forwards 

the instructions arranged in it to the instruction unit (IU).  



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

29 

The instruction unit accepts instructions from the prefetch queue and an instruction decoder 

decodes them one by one. The decoded instructions are latched onto a decoded instruction queue. The 

output of the decoding circuit drives a control circuit in the execution unit, which is responsible for 

executing the instructions received from decoded instruction queue.  

The  decoded instruction queue sends the data part of the instruction over the data bus. The EU 

contains the register bank used for storing the data as scratch pad, or used as special purpose registers. 

The ALU, the heart of the EU, carries out all the arithmetic and logical operations and sends the results 

over the data bus or back to the register bank. 

 

 
Interrupts of 80286 

The Interrupts of 80286 may be divided into three categories, 

1. External or hardware interrupts 

2. INT instruction or software interrupts 

3. Interrupts generated internally by exceptions 

While executing an instruction, the CPU may sometimes be confronted with a special situation 

because of which further execution is not permitted. While trying to execute a divide by zero instruction, 

the CPU detects a major error and stops further execution.  

In this case, we say that an exception has been generated. In other words, an instruction exception 

is an unusual situation encountered during execution of an instruction that stops further execution. The 

return address from an exception, in most of the cases, points to the instruction that caused the exception. 

As in the case of 8086, the interrupt vector table of 80286 requires 1Kbytes of space for storing 256, 

four-byte pointers to point to the corresponding 256 interrupt service routines (lSR).  



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

30 

Each pointer contains a 16-bit offset followed by a 16-bit segment selector to point to a particular 

ISR. The calculation of vector pointer address in the interrupt vector table from the (8-bit) INT type is 

exactly similar to 8086. Like 8086, the 80286 supports the software interrupts of type 0 (INT 00) to type 

FFH (INT FFH). 

Maskable Interrupt INTR: This is a maskable interrupt input pin of which the INT type is to be 

provided by an external circuit like an interrupt controller. The other functional details of this interrupt 

pin are exactly similar to the INTR input of 8086.  

Non-Maskable Interrupt NMI: It has higher priority than the INTR interrupt. Whenever this interrupt is 

received, a vector value of 02 is supplied internally to calculate the pointer to the interrupt vector table. 

Once the CPU responds to a NMI request, it does not serve any other interrupt request (including NMI). 

Further it does not serve the processor extension (coprocessor) segment overrun interrupt, till either it 

executes IRET or it is reset. To start with, this clears the IF flag which is set again with the execution of 

IRET, i.e. return from interrupt. 

Single Step Interrupt 

As in 8086, this is an internal interrupt that comes into action, if trap flag (TF) of 80286 is set. 

The CPU stops the execution after each instruction cycle so that the register contents (including flag 

register), the program status word and memory, etc. may be examined at the end of each instruction 

execution. This interrupt is useful for troubleshooting the software. An interrupt vector type 01 is 

reserved for this interrupt. 

Interrupt Priorities: 

If more than one interrupt signals occur simultaneously, they are processed according to their 

priorities as shown below: 

 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

31 

 
Signal Description of 80286 

CLK: This is the system clock input pin. The clock frequency applied at this pin is divided by two 

internally and is used for deriving fundamental timings for basic operations of the circuit. The clock is 

generated using 8284 clock generator.  

D15-D0: These are sixteen bidirectional data bus lines. A23-A0: These are the physical address output lines 

used to address memory or I/O devices. The address lines A23 - A16 are zero during I/O transfers 

BHE: This output signal, as in 8086, indicates that there is a transfer on the higher byte of the data bus 

(D15 – D8) .  

S1 , S0: These are the active-low status output signals which indicate initiation of a bus cycle and with 

M/IO and COD/INTA, they define the type of the bus cycle. 

M/ IO: This output line differentiates memory operations from I/O operations. If this signal is it “0” 

indicates that an I/O cycle or INTA cycle is in process and if it is “1” it indicates that a memory or a 

HALT cycle is in progress. 

COD/ INTA: This output signal, in combination with M/ IO signal and S1 , S0 distinguishes different 

memory, I/O and INTA cycles. 

LOCK: This active-low output pin is used to prevent the other masters from gaining the control of the 

bus for the current and the following bus cycles. This pin is activated by a "LOCK" instruction prefix, or 

automatically by hardware during XCHG, interrupt acknowledge or descriptor table access 

READY This active-low input pin is used to insert wait states in a bus cycle, for interfacing low speed 

peripherals. This signal is neglected during HLDA cycle. 

HOLD and HLDA This pair of pins is used by external bus masters to request for the control of the 

system bus (HOLD) and to check whether the main processor has granted the control (HLDA) or not, in 

the same way as it was in 8086. 

INTR: Through this active high input, an external device requests 80286 to suspend the current 

instruction execution and serve the interrupt request. Its function is exactly similar to that of INTR pin of 

8086. 

NMI: The Non-Maskable Interrupt request is an active-high, edge-triggered input that is equivalent to an 

INTR signal of type 2. No acknowledge cycles are needed to be carried out.  

PEREG and PEACK (Processor Extension Request and Acknowledgement) 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

32 

Processor extension refers to coprocessor (80287 in case of 80286 CPU). This pair of pins 

extends the memory management and protection capabilities of 80286 to the processor extension 80287. 

The PEREQ input requests the 80286 to perform a data operand transfer for a processor extension. The 

PEACK active-low output indicates to the processor extension that the requested operand is being 

transferred. 

BUSY and ERROR: Processor extension BUSY and ERROR active-low input signals indicate the 

operating conditions of a processor extension to 80286. The BUSY goes low, indicating 80286 to 

suspend the execution and wait until the BUSY become inactive.  

In this duration, the processor extension is busy with its allotted job. Once the job is completed 

the processor extension drives the BUSY input high indicating 80286 to continue with the program 

execution. An active ERROR signal causes the 80286 to perform the processor extension interrupt while 

executing the WAIT and ESC instructions. The active ERROR signal indicates to 80286 that the 

processor extension has committed a mistake and hence it is reactivating the processor extension 

interrupt. 

CAP: A 0.047 μf, 12V capacitor must be connected between this input pin and ground to filter the output 

of the internal substrate bias generator. For correct operation of 80286 the capacitor must be charged to 

its operating voltage. Till this capacitor charges to its full capacity, the 80286 may be kept stuck to reset 

to avoid any spurious activity.  

Vss: This pin is a system ground pin of 80286. 

Vcc: This pin is used to apply +5V power supply voltage to the internal circuit of 80286. RESET The 

active-high RESET input clears the internal logic of 80286, and reinitializes it. 

RESET The active-high reset input pulse width should be at least 16 clock cycles. The 80286 requires at 

least 38 clock cycles after the trailing edge of the RESET input signal, before it makes the first opcode 

fetch cycle. 

Real Address Mode 

• Act as a fast 8086 

• Instruction set is upwardly compatible 

• It address only 1 M byte of physical memory using A0-A19. 

• In real addressing mode of operation of 80286, it just acts as a fast 8086. The instruction set is upward 

compatible with that of 8086.  

The 80286 addresses only 1Mbytes of physical memory using A0- A19. The lines A20-A23 are not 

used by the internal circuit of 80286 in this mode. In real address mode, while addressing the physical 

memory, the 80286 uses BHE along with A0- A19. The 20-bit physical address is again formed in the 

same way as that in 8086. 

The contents of segment registers are used as segment base addresses. The other registers, 

depending upon the addressing mode, contain the offset addresses. Because of extra pipelining and other 

circuit level improvements, in real address mode also, the 80286 operates at a much faster rate than 8086, 

although functionally they work in an identical fashion. As in 8086, the physical memory is organized in 

terms of segments of 64Kbyte maximum size. 

An exception is generated, if the segment size limit is exceeded by the instruction or the data. The 

overlapping of physical memory segments is allowed to minimize the memory requirements for a task. 

The 80286 reserves two fixed areas of physical memory for system initialization and interrupt vector 

table. In the real mode the first 1Kbyte of memory starting from address 0000H to 003FFH is reserved 

for interrupt vector table. Also the addresses from FFFF0H to FFFFFH are reserved for system 

initialization. 

The program execution starts from FFFFH after reset and initialization. The interrupt vector table 

of 80286 is organized in the same way as that of 8086. Some of the interrupt types are reserved for 

exceptions, single-stepping and processor extension segment overrun, etc 



EC 8691-Microprocessor and Microcontroller  Unit-2 

 
 

33 

When the 80286 is reset, it always starts the execution in real address mode. In real address mode, 

it performs the following functions: it initializes the IP and other registers of 80286, it prepares for 

entering the protected virtual address mode. 

 
Protected Virtual Address Mode (PVAM) 

 80286 is the first processor to support the concepts of virtual memory and memory management. 

The virtual memory does not exist physically it still appears to be available within the system. The 

concept of VM is implemented using Physical memory that the CPU can directly access and secondary 

memory that is used as a storage for data and program, which are stored in secondary memory initially. 

The Segment of the program or data required for actual execution at that instant is fetched from 

the secondary memory into physical memory. After the execution of this fetched segment, the next 

segment required for further execution is again fetched from the secondary memory, while the results of 

the executed segment are stored back into the secondary memory for further references. This continues 

till the complete program is executed. 

During the execution the partial results of the previously executed portions are again fetched into 

the physical memory, if required for further execution. The procedure of fetching the chosen program 

segments or data from the secondary storage into physical memory is called swapping. The procedure of 

storing back the partial results or data back on the secondary storage is called unswapping. The virtual 

memory is allotted per task. 

The 80286 is able to address 1 G byte (230 bytes) of virtual memory per task. The complete virtual 

memory is mapped on to the 16Mbyte physical memory. If a program larger than 16Mbyte is stored on 

the hard disk and is to be executed, if it is fetched in terms of data or program segments of less than 

16Mbyte in size into the program memory by swapping sequentially as per sequence of execution. 

Whenever the portion of a program is required for execution by the CPU, it is fetched from the 

secondary memory and placed in the physical memory is called swapping in of the program. A portion of 

the program or important partial results required for further execution, may be saved back on secondary 

storage to make the PM free for further execution of another required portion of the program is called 

swapping out of the executable program. 

 

 

 



1 
 

UNIT III 

I/O INTERFACING 

 

 

Memory Interfacing and I/O interfacing - Parallel communication interface – Serial communication 

interface – D/A and A/D Interface - Timer – Keyboard /display controller – Interrupt controller – DMA 

controller – Programming and applications Case studies: Traffic Light control, LED display , LCD display, 

Keyboard display interface and Alarm Controller. 

 

 

1. Explain in detail about Memory Interfacing and I/O interfacing of 8086. 

 

8086 memory is divided into two memory banks and each memory bank size is 512K X 8 bits (Shown in 

fig-1) 

 

• Low-bank holds even addressed bytes 00000H through FFFFEH 

• High-bank holds odd addressed bytes 00001H through FFFFFH 

• Address/data bus is demultiplexed. 

• Input bus: 20-bit address bus ( A19 through A0), and BHE* 

   A1-A19, address lines select storage location 

   If A0 = 0 enables low memory bank 

  If BHE* = 0 enables high memory bank 

• Input / Output bus: 16-bit data bus (D15 through D0) 

    D7-D0  : Even addressed byte accesses 

    D15-D8  : Odd addressed byte accesses 

    D15-D0  : Word accesses 

 

 
Fig-1: Memory Hardware organization of address space 

 

A type of data writes that may take place: 



2 
 

 

• Byte to a storage location in the upper (odd) bank 

• Byte to a storage location in the lower (even) bank 

• Word to storage locations in both banks 

• Write control logic must decode A0L, BHEL* and MWTC* to produce independent write signals       

   WRU* and WRL* (Shown in fig -2) 

 

 
Fig -2: 2-input OR gate solution for decoding write control signals 

 

• MWTC* =0 enables both gates  

 

BHEL*  AOL  WRU*  WRL*      Bank selection 

  0  0     0     0   Both banks enabled 

  1  0     1     0   Lower (even) bank enabled 

  0   1     0     1  Upper (odd) bank enabled 

 

• All accesses take a minimum of one bus cycle of duration 

  @5MHz—800ns 

  @8MHz—500ns 

 

During all memory accesses one of three bus cycle status code are output by the MPU (Microprocessor 

Unit) 

• Opcode fetch 

• Read memory 

• Write memory 

 

• 8288 decodes to produce appropriate control / command signals 

• MRDC*  Opcode fetch/memory read 

• MWTC*  Memory write 

• AMWC*  Advanced memory write 

 

Building blocks of the maximum mode 8086 memory interface 

 

It has the following blocks shown in fig-3.:  

• 8288 bus controller 

• Address bus latch 

• Address decoder 

• Data bus transceiver/buffer 

• Bank read control logic 



3 
 

• Bank write control logic 

• Memory subsystem 

   

Parts of address applied to address inputs of memory subsystem, address decoder, and  read/ write control 

logic banks 

• Bank selection is accomplished in two ways: 

– separate write signal is developed to select a write to each bank of the memory 

– separate decoders are used for each bank  

• The first technique is by far the least costly approach to memory interface. 

• The second technique is only used in a system that must achieve most efficient use of the power 

supply.  

 
                   

Fig-3 : Maximum mode  of 8086 memory interface 

 

I/O Interfacing  

 To communicate with the outside world, microprocessor use Peripherals, I/O Devices such as  

keyboards, A/D converters, input devices and output devices such as CRT, Printers etc.,  



4 
 

 These input and output devices are called Peripherals or I/Os.  

 Peripherals are connected to the microprocessor through electronic circuits known as interfacing 

circuits. 

 These interfacing circuits convert the data available from an input device into compatible format for 

the computer. 

 The interface associated with the output device converts the output of the microprocessor into the 

desired peripheral format. 
 

There are two schemes (Interfacing Configurations) for the allocation of addresses to memories and 

input/output devices. They are  

Interfacing Configurations 

1. Memory mapped I/O 

2. I/O mapped I/O (Isolated I/O)  

Isolated I/O: It uses I/O instructions (IN & OUT) and it has its own address space for I/O ports 

(0000H-FFFFH), isolated from the memory address space. 

Memory mapped I/O: uses memory reference instructions (e.g. MOV). So address space is shared 

between memory and I/O. 

• Memory-mapped I/O does not use the IN or OUT instructions.  

• It uses any instruction that transfers data between the microprocessor and memory.  

– treated as a memory location in memory map 

• Same as interfacing 8086 memory in Minimum Mode and Maximum Mode  

• I/O devices are treated separately from memory 

• Address 0000 to 00FF is referred to page 0.  

• Special instructions exist for this address range 

• Advantage:  Any memory transfer instruction can access the I/O device.  

• Disadvantage: A portion of memory system is used as the I/O map and reduces memory available 

to applications 

 

Memory mapped I/O 

In this type of I/O interfacing, the 8086 uses 20 address lines to identify an I/O device. The I/O 

device is connected as memory device.  



5 
 

The 8086 uses same control signals and instructions to access I/O. RD and WR signals are 

activated indicating memory bus cycle. 

 

I/O mapped I/O: 

8086 has special instructions IN and OUT to transfer data through the input/output ports in I/O 

mapped I/O system.  

The IN instruction copies data from an input port to the Accumulator. The OUT instruction 

copies a byte from AL or a word from AX to the specified port.  

The M/IO signal is always low when 8086 is executing these instructions. Address of I/O 

device is 8-bit or 16-bit long.  

 

Program to operate in I/O mode. 

• To write the data 00H into Output port 62H: 
   MOV  AL,00H 

   OUT  62H,AL 

            or 

   MOV  AL,00H 

   MOV  DX,62H 

   OUT   DX,AL 

• To read a byte from Input port address 71H: 

   IN  AL,71H 

            or 

   MOV  DX,71H 

   IN  AL,DX 

 

Minimum mode interface 

 

 
Fig-4: I/O interfacing with minimum mode 

 

 

Maximum mode interface  



6 
 

 
Fig-5: I/O interfacing with maximum mode 

 

 

2. Describe the internal block diagram of 8255 (December 2010) (or) 

    Parallel communication interface (8255) 

    (Programmable peripheral interface) 

 The 8255 is a general purpose programmable I/O device used for parallel data transfer. 

  It has 24 I/O programmable pins which can be grouped into three 8 bit parallel ports of Port A , 

Port B and Port C. It is TTL compatible.  

 The eight bit ports of PORT C can be used as individual bits or be grouped into two 4 bit ports. 

Cupper  (Cu) and CLower (CL).  

 The functions of 8255 are classified according to two modes. The Bit Set/Reset mode and the I/O      

                   mode. The BSR mode is used to set or reset the bits in Port C. 

 The 8-bit data bus buffer is controlled by the read/write control logic. The read/write control logic 

manages all of the internal and external transfers of both data and control words. 

 RD , WR , A1, A0 and RESET are the inputs provided by the microprocessor to the READ/ WRITE 

control logic of 8255.  

 The 8-bit, 3-state bidirectional buffer is used to interface the 8255 internal data bus with the 

external system data bus. 

 This buffer receives or transmits data based on the execution of input or output instructions by the 

microprocessor. The control word is also transferred through the buffer. 

 

Functions of Pin: 

The signal descriptions of 8255 are briefly presented as follows: 

• PA7-PA0: These are eight port A lines that acts as either latched output or buffered input lines    

   depending upon the control word loaded into the control word register. 

• PC7-PC4 : Upper nibble of port C lines. They may act as either output latches or input buffers lines. 

• This port also can be used for generation of handshake lines in mode 1 or mode 2. 

• PC3-PC0 : Lower nibble of port C lines. They may act as either output latches or input buffers lines. 

• This port also can be used for generation of handshake lines in mode 1 or mode 2. 



7 
 

• PB0-PB7 : These are eight port B lines which are used as latched output lines or buffered input lines     

   in the same way as port A. 

• A1-A0 : These are the address input lines and are driven by the microprocessor.  

• In case of 8086 systems, if the 8255 is to be interfaced with lower order data bus, the A0 and A1       

      pins of 8255 are connected with A1 and A2 of 8086 respectively. 

• These address lines A1- A0 are used for addressing any one of the four registers, i.e. three ports and 

a control word register as given in table below. 

A1  A0  Select  

0  0  PA  

0  1  PB  

1  0  PC  

1  1  Control register 

 

       •    RD : This is the input line driven by the microprocessor and should be low to indicate read      

                      operation to 8255. 

• WR : This is an input line driven by the microprocessor. A low on this line indicates write     

          operation. 

• CS : This is a chip select line. If this line goes low, it enables the 8255 to respond to RD and WR    

         Signals.  

•     D0-D7 : These are the data bus lines carry data or control word to/from the microprocessor. 

     •     RESET : A logic high on this line, clears the control word register of 8255. All ports are set as      

                         input ports by default after reset. 

                             
                  



8 
 

 
            Fig-6: Pin diagram &Block diagram of 8255 Programmable  Peripheral interface.  

The 8255 consists of four sections namely, 

 Data bus buffer 

 Read/write control logic 

 Group A control 

 Group B control 

Data Bus buffer: 

• It is an 8-bit bidirectional Data bus. 

• Used to interface between 8255 data bus with system bus. 

• The internal data bus and Outer pins D0-D7 pins are connected in internally. 

• The direction of data buffer is decided by Read/Control Logic. 

 

Read/Write Control Logic: 

• This is getting the input signals from control bus and Address bus 

• Control signal are RD and WR. 

• Address signals are A0, A1and CS. 

• 8255 operation is enabled or disabled by CS. 

Group A and Group B control: 

• Group A and B get the Control Signals from CPU and send the command to the individual control 

blocks.  

• Group A send the control signal to port A and Port C (Upper) PC7-PC4. 

• Group B send the control signal to port B and Port C (Lower) PC3-PC0. 

PORT A: 

• This is an 8-bit buffered I/O latch. 

• It can be programmed by mode 0 , mode 1 & mode 2 . 

PORT B: 

• This is an 8-bit buffer I/O latch. 



9 
 

• It can be programmed by mode 0 and   mode 1. 

PORT C: 

• This is an 8-bit Unlatched buffer Input and an Output latch. 

• It is divided into two parts as Port C (Upper) PC7-PC4 & Port C (Lower) PC3-PC0 

• It can be programmed by bit set/reset operation. 

 

CONTROL WORD FORMATS: 

 

 There are two control word formats i) BSR mode ii) Input / Output mode 

 

FOR BIT SET/RESET MODE: 

 
 

• PC0-PC7 is set or reset as per the status of D0. 

• A BSR word is written for each bit of Port C 

 

Example: 

• PC3 is Set then control register will be 0XXX0111. 

• PC4 is Reset then control register will be 0XXX01000. 

• X is a don’t care. 

 

 FOR I/O MODE 

          The mode format for I/O as shown in figure 

 
• The control word for both Mode 1 and Mode 2 are same. 



10 
 

• Bit D7 is used for specifying whether word loaded in to Bit set/reset mode or Mode definition word. 

• D7=1=Mode definition mode. 

• D7=0=Bit set/Reset mode. 

 

  Steps to communicate with peripherals through the 8255: 

 1. Determine the addresses of Port A, port B, port C and control register according to the chip select logic and 

address lines A0 and A1. 

 2. Write a control word in the control register. 

 3. Write I/O instructions to communicate with peripherals through ports A, B and C. 

 Operation modes 
 

 BIT SET/RESET MODE:  

• The PORT C can be Set or Reset by sending OUT instruction to the CONTROL registers. 

• In BSR mode, individual bits of Port C   can be used for applications such as on/off switch. 

• The control word sets or resets one bit at a time. 

• BSR control word does not alter any previously transmitted control word with bit D7=1. Thus the 

I/O operations of Port A and Port B are not affected by a BSR control word. 

 

 I/O MODES: 

  The I/O mode is divided into three modes as mode 0, mode 1, and mode 2.  

o Mode 0 – Basic I/O mode 

o Mode 1 – strobbed I/O mode 

o Mode 2 – Bidirectional data transfer mode 

 

MODE 0 (Simple input / Output): 

 

• In this mode , port A and port B  are used as two simple 8 bit I/O ports and port C as two 4 bit ports  

used as  individually (Simply). 

 
Features: 

• Outputs are latched, Inputs are buffered. 

• Ports do not have Handshake or interrupt capability. 

 

MODE 1 : (Input/output with Hand shake) 

• In this mode, input or output is transferred by hand shaking Signals. The handshaking signals are 

exchanged between the microprocessor and peripherals. 

 



11 
 

The features of this mode include the following 

1. Two ports (A and B) function as 8 bit I/O ports .They can be configured either as input or output ports. 

2. Each port uses 3 lines from port C as handshake signals. The remaining 2 lines of PORT C can be used for 

simple I/O operations. 

3. Input and outputs data are latched. 

4. Interrupt logic is supported.  

     In 8255, the specific lines from PORT C used for handshake signals vary according to the I/O function of a 

port. Therefore input and output functions in Mode 1 are discussed separately.  

Input control signal definitions (Mode 1 ): 

• STB( Strobe input ) – If this line falls to logic low level, the data available at 8-bit input port is loaded into 

input latches. 

• IBF ( Input buffer full ) – If this signal rises to logic 1, it indicates that data has been loaded into latches, 

i.e. it works as an acknowledgement. 

 • INTR ( Interrupt request ) – This active high output signal can be used to interrupt the CPU whenever an 

input device requests the service. INTR is set by a high STB pin and a high at IBF pin.  

 INTE is an internal flag that can be controlled by the bit set/reset mode of either PC4(INTEA) or 

PC2(INTEB) as shown in fig. 

        INTR is reset by a falling edge of RD input. Thus an external input device can be request the service of 

the processor by putting the data on the bus and sending the strobe signal. 

 

 
              

Output control signal definitions (Mode 1) : 

• OBF (Output buffer full ) – When this signal falls to low, indicates that CPU has written data to the 

specified output port. 



12 
 

• ACK ( Acknowledge input ) – ACK signal acts as an acknowledgement to be given by an output 

device. ACK signal, whenever low, informs the CPU that the data transferred by the CPU to the output 

device through the port is received by the output device. 

• INTR ( Interrupt request ) – Thus an output signal that can be used to interrupt the CPU when an 

output device acknowledges the data received from the CPU. 

 

 
 

          MODE 2: Bi-directional I/O data transfer: 

 

• This mode allows bidirectional data transfer over a single 8-bit data bus using handshake signals. 

• In this mode, Port A can be configured as the bidirectional port and Port B is either in Mode 0 or 

Mode 1. 

• Port A uses 5 signals from Port C as handshake signals for data transfer. The remaining 3 signals 

from Port C can be used either as simple I/O or as handshake for Port B. 

. 

 

 
 

 

************************************************************************ 



13 
 

3.Explain in detail about Serial Communication Interface 

 Serial I/O Interfacing: 

 The MPU (Microprocessor Unit) selects the peripheral through chip select and uses the control signals. 

Read to receive data and write to transmit data. 

Transmission format: 

 In synchronous format, receiver and transmitter are synchronized with the same clock and a block 

of characters are transmitted along with the synchronization information. This format is generally 

used for high speed transmission (more than 20 Kbits/second) 

 The asynchronous format is character oriented. Each character carries the information of the start 

and stop bits. Transmission starts with one start bit (low) followed by a character , and one or two 

stop bits (high). It is used in low speed transmission less than 20Kbits/second. 

 

Communication Modes: 

Simplex   - Data are transmitted in only one direction. 

Example: Transmission from a microcomputer to a printer. 

Duplex   -   Data flow in both direction 

 Half Duplex   - If the transmission goes one way at a time it is called half duplex. Ex.: 

walky-talky 

 Full Duplex –  If  both transmitting  and receiving  signals  goes  simultaneously, it is called 

full duplex. Example: Transmission between computers. 

Rate of transmission 

 The rate at which the bits are transmitted is called bits/second or Baud rate 

For example 1200 baud   = 1200 bits/second 

It indicates1200 bits are transmitted in a second. For 1 bit it takes 1/1200 =0.83 ms. 

Programmable serial Communication Interface (8251): 

     Programmable serial interface  

            The 8251 is a programmable USART (Universal Synchronous Asynchronous Receiver 

Transmitter) is designed for Synchronous and Asynchronous serial communication packaged in a 28 pin 

DIP.  



14 
 

The 8251 receives parallel data from the CPU and transmits serial data after conversion. This device also 

receives serial data from the outside and transmits parallel data to the CPU after conversion. 

Features of 8251 

   Supports both synchronous and asynchronous modes of operation 

 Synchronous baud rate – 0 to 64 K baud 

 Asynchronous baud rate – 0 to 19.2 K baud 

 Contains full duplex double buffered system 

 Provides error detection to detect parity and framing errors 

 28-pin DIP package, TTL compatible  

 Single +5V supply 

Block diagram of 8251: 

 Intel 8251 A is a programmable Serial Communication interface IC. It is available in 28 pin Dual-In-Line 

package. It is used for synchronous & asynchronous serial data communication. The functional block 

diagram is shown below. It consists of 5 sections namely, 

o Data bus buffer 

o Read/Write control logic 

o Modem control 

o Transmitter section 

o Receiver section 

Data Bus Buffer: 

 It is used to temporarily store the data which is to be transmitted (or) received. It consists of D0 - D7 signals. 

Read/Write Control Logic: 

 It consists of 3 registers namely data bus buffer, control register and status register. 

 Reset, CLK, C / D ,  R D,  WR ,  C S  signals are associated with this block, If C/D is high, the control 

register is selected for writing control word. 

 If C/D is low, then, the data buffer is selected for read/write operation. 

 CS signal means chip select signal. It is generated by using unused address lines of processor. If it is low, 

then the chip is activated. If Reset signal is high, then 8251 is forced to enter into the idle mode. 

 CLK signal is used for 8251 to communicate with CPU. 

 RD and WR signal are used for read & write operations. 



15 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: BLOCK DIAGRAM OF 8251 

MODEM Control 

 This block is used to interface MODEM to 8251. It is used to provide data communication through 

MODEM over the telephone cable. 

Transmitter Section 

 The data which is to be transmitted is given by using D0 - D7 signals to the data bus buffer. Then, the data 

is transferred to the Transmit Buffer. Here, the parallel data is converted to the serial data. It is transmitted 

by using the signal TXD. 

 This section consists of 2 registers namely transmit buffer register & output register. Transmit buffer is used 

to hold the 8-bit data & output register is used to convert parallel data into serial data. If output register is 

empty, then the data is transferred from buffer register to output register. 

 If buffer register is empty, then TXRDY signal is asserted high. If output register is empty, then TXEMPTY 

signal is asserted high. 

 TXC signal is used to control the rate of transmission. 

Receiver Section 

 This section receives serial data from the signal RXD and converts that data into parallel data. It consists of 

2 registers namely input register & buffer register. 

 Input register receives the serial data & convert it into parallel. Buffer register is used to hold the previous 

converted data. If input register loads parallel data into buffer register, then, the RXRDY signal is asserted 

high. 



16 
 

 If RXD signal is low for a half of bit time, then it is assumed as start bit. So, following bits are loaded into 

the buffer register. 

 If RXC signal is used to control the rate of reception. 

 During synchronous mode, the signal SYNDET/BRKDET is used to indicate the reception of synchronous 

character. 

 During asynchronous mode, SYNDET/BRKDET signal is used to indicate the break in the data 

transmission. 

Pin Description: 

D0 to D7 ( Data bus Buffer) 

 This is bidirectional data bus which receives control word and transmits data from the CPU and sends 

status words and received data to CPU. 

RESET (Input terminal) 

 A "High" on this input forces the 8251 into "reset status." The device waits for the writing of "mode 

instruction."  

CLK (Input terminal) 

 CLK signal is used to generate internal device timing. CLK signal is independent of RxC or TxC.  

WR ( Write) 

 This is the "active low" input terminal which receives a signal for writing transmit data and control words 

from the CPU into the 8251. 

RD (Read) 

 This is the "active low" input terminal which receives a signal for reading receive data and status words 

from the 8251. 

C/D ( Control/Data) 

 If C/D = low, data will be accessed. If C/D = high, command word or status word will be accessed. 

CS ( Chip Select) 

 This is the "active low" input terminal which selects the 8251 at low level when the CPU accesses.  

 

 



17 
 

 

SYNDET/BD (Input or output terminal) 

 This is a terminal whose function changes according to mode. In "internal synchronous mode." this         

terminal     is at high level, if sync characters are received and synchronized. 

 DSR ( Data set ready) 

       This is an input port for MODEM interface. This is normally used to check if the Data set is ready when     

           communicating with a modem. 

 DTR ( Data terminal ready) 

       This is an output port for MODEM interface. It is  used to indicate that the device is ready to accept data      

           when the 8251 is communicating with a modem. 

 CTS (clear to send) 

       This is an input terminal for MODEM interface which is used for controlling a transmit circuit. Data is      

           transmittable if the terminal is at low level. 

 RTS ( Request to send data) 

        This is an output port for MODEM interface. It  is used to indicate the MODEM that the receiver  is         

            ready to receive a data byte from the MODEM. 

Control Register 

 The 16 bit register for a control word consists of two independent bytes. The first byte is called the mode 

instruction and the second byte is called the command instruction. This register can be accessed as an output 

port when the C/D pin is high. 

Status Register 

This input register checks the ready status of a peripheral. This register is addressed as an input port when the 

C /D is high. It has the same port address as the control register. 

  

4. Draw the block diagram of 8279 Keyboard/Display controller and explain how to interface the 

Hex Key Pad and 7-segment LEDs using 8279.  (April 2010) 

 It simultaneously drives the display of a system and interfaces a keyboard with the microprocessor. 

 The keyboard display interface scans the keyboard to identify if any keys has been pressed and 

sends the code of the pressed key to the microprocessor. 

 It also transmits the data received from microprocessor to the display device. 

PIN DIAGRAM OF 8279: 

DATA BUS (D7-D0) 

 All data and commands between the microprocessor and 8279 are transmitted on these lines. 

RD (read): 

 Microprocessor reads the data/ status from 8279. 

WR (write): 

 Microprocessor writes the data to 8279 

A0: 



18 
 

 A high signal on this line indicates that the word is a command or status. A low signal indicates the 

data. 

RESET: 

 High signal in this pin resets the 8279. After being reset, the 8279 is placed in the following modes 

16 x 8 – bit character display – left entry 

 Two key lock out 

 

 

CS (Chip Select): 

 A low signal on this input pin enables the communication between 8279 and the microprocessor. 

IRQ (Interrupt Request): 

 The interrupt line goes low with each FIFO/sensor RAM reads and returns high if there still 

information in the RAM 

SL0-SL3: 

 The scan lines which are used to scan the key switch or sensor matrix and the displays digits. These 

lines can be either encoded (1 of 16) or decoded (1 of 4) 

RL0-RL7: 

 Input return lines which are connected to the scan lines through the keys or sensor switches.  

SHIFT: 

 It has an active internal pull-up to keep it high until a switch closure pulls it low. 

CNTL/STB: 

 For keyboard mode, this line is used as a control input and stored like status on a key closure. 

 The line is also the strobed line to enter the data into the FIFO in the strobed input. 

OUT A0 – OUT A3, OUT B0 – OUT B3: 



19 
 

 These two ports are the outputs for the 16x4 display refresh registers. These two ports may also be 

considered as one 8 – bit port. The two 4 – bit ports may be blanked independently. 

BD: 

 This output is used to blank the display digit switching or by a display banking command. 

BLOCK DIAGRAM OF 8279: 

The 8279 has the following four sections. 

 CPU interface section 

 Keyboard section 

 Scan section 

 Display section 

CPU INTERFACE SECTION: 

 This section has bi-directional data buffer (DB0 –DB7), I/O control lines (RD, WR, CS, A0) and 

Interrupt Request lines (IRQ). 

 The A0 signal determines whether transmit/receive control word or data is used. 

An active high in line IRQ is generated to interrupt the microprocessor whenever the data is available. 

A0 RD WR Operation 

0 0 0 MPU writes the data is 8279 

0 0 1 MPU reads the data from 8279 

1 1 0 MPU writes control word to 8279 

1 0 1 MPU read status word from 8279 

 

KEYBOARD SECTION: 



20 
 

 This section has keyboard debounce & control, 8X8 FIFO/sensor RAM, 8 return lines (RL0 – 

RL7) and CNTL/STB and shift lines. 

 In the keyboard debounce and control unit, keys are automatically debounced and the keyboard 

can be operated in two modes. 

o Two keys lock out 

o N – key roll over 

Two-Key lockout mode: 

 If two keys are depressed within the debounce cycle, it is a simultaneous depression. Neither key 

will be recognized until one of the key is released. The final key released will be recognized and 

entered. 

N-Key Rollover mode: 

 In this mode, each key depression is treated independently. If simultaneous depression occurs, then 

keys are recognized and entered according to the order the keyboard scan found them. 

 The 8X8 FIFO/sensor RAM consists of 8 registers that are used to store eight keyboard entries. 

 The return lines (RL0-RL7) are connected to eight columns of keyboard. 

 The status of shift and CNTL/STB lines are stored along with the key closure. 

SCAN SECTION: 

 This section has scan counter and four scan lines (SL0 – SL3). 

 These lines are decoded (by using 4 to 16 decoder) to generate 16 scan lines. 

 Generally SL0 – SL3 are connected with the rows of a matrix keyboard. 

DISPLAY SECTION: 

 This section has two groups of outputs lines A0 – A3 and B0 – B3. These lines are used to send 

data to display drivers. 

 BD line is used blank the display. It also has 16X8 displays RAM. 

Modes of operations of 8279 

 

1. Input (Keyboard) modes 

2. Output (Display) modes 

       Keyboard modes 

 Scanned keyboard mode with N key rollover 

   In this mode, each key depression is treated independently. When a key is pressed, the debounce 

circuit waits for 2 keyboards scans and then checks whether the key is still depressed. If it is still depressed, 

the code is entered in FIFO RAM 

 Scanned keyboard mode with 2 key lock out. 

                    It Prevents 2 keys from being recognized if pressed simultaneously. If two keys are pressed  within a 

debounce cycle (simultaneously), no key is recognized till one of them remains closed, and the other is 

released. The last key that remains depressed is considered as single valid key depression. 

            

  Display modes: 



21 
 

Left entry mode 

The data is entered from the left side of the display unit. 

Right entry mode 

The first entry to be displayed is entered on the rightmost display. 

        

   Programming the Keyboard Interface : 

 Before any keystroke is detected, the 8279 must be programmed. 

 The first 3 bits of the number sent to the control port (11H) select  

one of the 8 different control words. 

Command Words of 8279 

 
a) Keyboard Display mode set 

The format of the command word is to select different modes of operation of 8279  

 
 

 

 

       Control Word Description 



22 
 

      First three bits given below select one of 8 control registers (opcode) 

 000DDMMM 

Mode set: Opcode 000. 
 DD sets displays mode. 

 MMM sets keyboard mode 

DD field selects either: 

•  8- or 16-digit display 

•  Whether new data are entered to the rightmost or leftmost display position. 

b)Programmable clock 

The clock for operation of 8279 is obtained by dividing the external clock input signal by a programmable 

constant called prescaler. 

 001PPPPP 

•  The clock command word programs the internal clock driver. 

•  The code PPPPP, is a prescalar that divides the clock input pin (CLK) to achieve the desired  

• operating frequency, e.g. 100 KHz requires 010102 . 

 

(c)Read FIFO/Sensor RAM 

 010 AI  X  AAA  

   The read FIFO control word selects the address (AAA) of a keystroke from the FIFO buffer (000 to 111). 

   X -  don’t care 

  AI selects auto-increment for the address 

d) Read Display RAM 

 This command enables a programmer to read the display RAM data. 

 011 AI  AAAA 

 The display read control word selects the 4 bit address AAAA points to the 16 byte display RAM position 

  that is to be read.  

 AI selects auto-increment for the address. 

e) Write Display RAM 

 100 AI AAAA 
The display write control word selects the 4 bit address AAAA points to the 16 byte display  RAM 

positions that is to be written. 

Display. Z selects auto-increment so subsequent writes go to subsequent display positions. 

 

f)Display with inhibit blanking 

 1010WWBB 

The display write inhibit control word inhibits writing to either the leftmost 4 bits of the display (left W) or 

rightmost 4 bits (right W). 

BB works similarly except that they blank (turn off) half of the output pins. 

g) Clear Display RAM 

 1100CCFA 
The clear control word clears the display, FIFO or both 

Bit F clears FIFO and the display RAM status, and sets address pointer to 000. 

If CC are 00 or 01, all display RAM locations become 00000000. 

If CC is 10, --> 00100000, if CC is 11, --> 11111111. 

h) End Interrupt/Error mode set 



23 
 

 1110E000 

     End of Interrupt control word is issued to clear IRQ pin to zero in sensor matrix mode 

•  Clock must be programmed first. If 3.0 MHz drives CLK input, PPPPP is programmed to 30 or 

111102. 

•  Keyboard type is programmed next. The previous example illustrates an encoded keyboard, external 

decoder used to drive matrix. 

• Program the operation of the FIFO.Once programmed never reprogrammed done, until  a procedure is 

needed to read prior  keyboard codes . 

 To determine if a character has been typed, the FIFO status register is checked. 

 When the control port is addressed by the IN instruction, the contents of the FIFO status word is copied into 

register AL: 

5.Draw the functional block diagram of 8254 timer and explain the different modes of operation.  

  (April 2010)(Nov/Dec-2013) 

        Programmable Interval Timer: 8254 

  The 8254 is a programmable interval timer/counter is used for the generation of accurate time       

       delays ,controlling real-time events such as real-time clock, events counter, and motor speed and     

       direction control under software control. 

                   After the desired delay, the 8254 will interrupt the CPU. This makes microprocessor to be free     

        the tasks related to the counting process  and can execute the programs in memory, while the timer     

        device may perform the counting tasks. This minimize the Software overhead on the microprocessor. 

  It consists of three independent 16-bit programmable counters (timers),each with capable  of 

counting in binary or BCD with a maximum frequency of 10MHz. 

    Some of the other counter/timer functions common to microcomputers which can be       

         implemented with the 8254 are: 

 

• Real time clock 

• Event-counter 

• Digital one-shot 

• Programmable rate generator 

• Square wave generator 

• Binary rate multiplier 

PIN DIAGRAM OF 8254: 



24 
 

 

 

 

PIN DESCRIPTION: 

A1 A2 SELECTION 

0 0 Counter 0 

0 1 Counter 1 

1 0 Counter 2 

1 1 Counter 3 

 

BLOCK DIAGRAM OF 8254: 

DATA BUS BUFFER: 

 This 3- state, bi-directional, 8-bit buffer is used to interface the 8254 to the system bus. 

READ/WRITE LOGIC: 

 The Read/Write logic accepts inputs from the system bus and generates control signals for the 

other functional blocks of the 8254. 

 A1 and A0 select one of the three contents counters or the control word register to be read 

from/written into. 

 A “low” on the RD input tells the 8254 that the CPU is reading one of the counters. 

 A “low” on the WR input tells the 8254 that the CPU is writing either a control word or an initial 

count. 

 Both RD and WR are qualified by CS; RD and WR are ignored unless than 8254 has been selected 

by holding CS low. 

 



25 
 

 

 

 

CONTROL WORD REGISTER: 

 The control word register is selected by the read/write logic when A1, A0=11. 

 If the CPU then does a write operation to the 8254, the data is stored in the control word register 

and is interpreted as a control word used to define the operation of the counters. 

 The control word register can only be written to; status information is available with the            

Read-Back command. 

COUNTER 0, COUNTER 1, COUNTER 2: 

 Each is a 16 bit down counter 

 The counters are fully independent. Each counter may operate in a different mode. 

 Each counter has a separate clock input, count enable (gate) input lines and output lines. 

 The control word register is not a part of the counter itself, but its contents determine how the 

counter operates. 

OPERATIONAL MODES OF 8254: 

 The 8254 can operate in six operating modes. They are, 

Mode 0: Interrupt on Terminal count: 

 Mode 0 is typically used for event countering. 

 After the control word is written OUT is initially low, and will remain low until the counter 

reaches zero. 

 OUT then goes high and remains high until a new count or a new mode 0 control word is written 

into the counter. 



26 
 

o GATE = 1 enables counting; 

o GATE = 0 disables counting. GATE has no effect on OUT. 

 After the control word and initial count (say n=4, m=5) are written to a counter, the initial count 

will be loaded on the next CLK pulse. 

 This CLK pulse does not decrement the count. So far an initial count of N, OUT does not go high 

until N+1 CLK pulses after the initial count is written. 

 This mode can be used as an interrupt. 

 

Mode 1 – Hardware Retriggerable one-shot: 

 OUT will be initially high. OUT will go low on the CLK pulse following a trigger to begin the 

one-shot pulse, and will remain low until the counter reaches zero. 

 OUT will then go high and remain high until the CLK pulse after the next trigger. Thus generating 

a one- shot pulse. 

 After writing the control word and initial count, the counter is armed. A trigger results in loading 

the counter and setting OUT low on the next CLK pulse, the starting the one-shot pulse. 

 An initial count of N will result is a one-shot pulse ‘N’ CLK cycles in duration. 

 

Mode 2: Rate generator 

 This mode function like a device – by – N counter 

 It is typically used to generate a real time clock interrupt. 

 OUT will initially be high. When the initial count has decremented to 1, OUT goes low for one 

CLK pulse. 



27 
 

 Count and the process are repeated. 

 

 Mode 3: Square wave mode: 

 Mode 3 is typically used for baud rate generation. 

 Mode 3 is similar to mode 2 except for the duty cycle of OUT, OUT will initially be high. 

 When half the initial count has expired, OUT goes low for the reminder of the count. 

 Mode 3 is periodic; the sequence above is repeated indefinitely. 

 An initial count of N results in a square wave with a period of N CLK cycles. 

 Mode 3 is implemented as follows: 

 

EVEN COUNTS: 

 OUT is initially high. The initial count is loaded on 1 CLK pulse and then is decremented by two 

on succeeding CLK pulses. 

 When the count expires OUT changes value and the counter is reloaded with the initial count. 

 The above process is repeated indefinitely. 

ODD COUNTS: 

 For odd counts, OUT will be high for (N+1)/2 counts and low for (N-1)/2 counts. 

 

Mode 4: Software triggered Strobe 

 The output goes high on setting the mode. 

 After terminal count, the output goes low for one clock period and then goes high again. 

 In this mode the OUT is initially high; it goes low for clock period at the end of the count. 

 The count must be reloaded for subsequent outputs. 



28 
 

 

Mode 5: hardware triggered strobe 

 This mode is similar to mode 4, but a trigger at the gate initiates the counting. 

 This mode is similar to mode 4, except that it is triggered by the rising pulse at the gate. 

 Initially the OUT is high and when the gate pulse is triggered from low to high, the count begins, 

at the end of the count; the OUT goes low for one clock period. 

 

      Command word of 8254 

 

 



29 
 

 

 Each counter may be programmed with a count of 1 to FFFFH. Minimum count is 1 all modes 

except 2 and 3 with minimum count of 2.Each counter has a program control word used to select the way 

the counter operates. If two bytes are programmed, then the first byte (LSB) stops the count, and the 

second byte (MSB) starts the counter with the new count. 

 

 

 

6.Discuss in detail about Programming and interfacing 8253 

There may be two types of write operations in 8253 

i) Writing control word into a control word register 

ii) Writing a count value into a count register. 

iii) The control word register accepts data from the data buffer and initializes the counter as 

required.  

iv) The control word register contents are used for  

a) Initializing operating modes(Mode 0 to Mode 4) 

b) Selection of counters (Counter0 to counter3) 

c) Choosing binary/BCD counters 

d) Loading the counter register 

Read Operations 

There are three possible methods for reading the counters: 



30 
 

•  a simple read operation 

•  the Counter Latch Command 

•  the Read-Back Command 

    Simple read operation : 
• The Counter which is selected with the A1, A0 inputs, the CLK input of the selected Counter 

must be inhibited by using either the GATE input or external logic.  Otherwise, the count may be in 

the process of changing when it is read, giving an undefined result 

    Counter Latch Command: 

• SC0, SC1 bits select one of the  three Counters 

•  Two other bits, D5 and D4, distinguish this command from a Control Word 

If a Counter is latched and then, sometime later, latched again before the count is read, the second 

Counter Latch Command is ignored. The count read will be the count at the time the first Counter Latch 

Command was issued. 

 

       Read-back control command 

• The read-back control, word is used when it is necessary for the contents   of more than one counter to 

be read   at a same time. 

• Count : logic 0, select one of the Counter to be latched 

• Status : logic 0, Status must be latched to be read status of a counter is accessed by a read from that 

counter 



31 
 

 

Status register: 

•  shows the state of the output pin 

•  check the counter is in NULL state  (0) or not  

•  how the counter is programmed    

 

  

************************************************************************* 

7. Explain in detail about Direct Memory Access (DMA Controller 8257) 

Direct memory access (DMA) or DMA mode of data transfer is the fastest amongst all the modes of data 

transfer. In this mode, the device may transfer data directly to/from memory without any interference from 

the CPU. 

THE DMA controller (8257) allows certain hardware subsystems to read/write data to/from memory 

without microprocessor intervention, allowing the processor to do other work. 

The device requests the CPU (through a DMA controller) to hold its data, address and control bus, so that 

the device may transfer data directly to/from memory. The DMA data transfer is initiated only after 

receiving HLDA signal from the CPU. For facilitating DMA type of data transfer between several devices, 

a DMA controller may be used. 



32 
 

 

It is used in disk controllers, video/sound cards etc, or between memory locations. Typically, the CPU 

initiates DMA transfer, does other operations while the transfer is in progress, and receives an interrupt 

from the DMA controller once the operation is complete.  

        It contains Five main Blocks. 

1. Data bus buffer 

2. Read/Control logic 

3. Control logic block 

4. Priority resolver 

5. DMA channels. 

 

 

 

 

Pin diagram of 8257: 



33 
 

 

Block diagram of 8257: 

 

DATA BUS BUFFER: 

 It contains tri-state, 8 bit bi-directional buffer. 

 Slave mode, it transfers data between microprocessor and internal data bus. 

 Master mode, the outputs A8-A15 bits of memory address on data lines (Unidirectional).  

 



34 
 

READ/CONTROL LOGIC: 

 It controls all internal Read/Write operation. 

 Slave mode ,it accepts address bits and control signal from microprocessor. 

 Master mode, it generates address bits and control signal. 

Control logic block: 

It contains , 

1. Control logic 

2. Mode set register and  

3. Status Register. 

CONTROL LOGIC: 

         Master mode,  

         It control the sequence of DMA operation during all DMA cycles. 

 It generates address and control signals. 

 It increments 16 bit address and decrement 14 bit counter registers. 

 It activate a HRQ signal on DMA channel Request. 

         Slave mode it is disabled. 

          D0 –D7 

 it is a bidirectional ,tri state ,Buffered ,Multiplexed data (D0-D7)and (A8-A15). 

 In the slave mode it is a bidirectional (Data is moving). 

         In the Master mode it is a unidirectional (Address is moving) 

         IOR 

 It is active low, tri-state, buffered, Bidirectional lines. 

 In the slave mode it function as a input line. IOR signal is generated by microprocessor to read 

the contents 8257 registers. 

 In the master mode it function as a output line. IOR signal is generated by 8257 during write 

cycle 

        IOW 

 It is active low, tri-state ,buffered ,Bidirectional control lines. 

 In the slave mode it function as a input line. IOR signal is generated by microprocessor to write 

the contents 8257 registers. 

 In the master mode it function as a output line. IOR signal is generated by 8257 during read  

cycle 

 CLK: 

 It is the input line, connected with TTL clock generator. 

 This signal is ignored in slave mode. 

 RESET: 
 Used to clear mode set registers and status registers 

 A0-A3: 
               These are the tri-state, buffer, bidirectional address lines. 



35 
 

 In slave mode, these lines are used as address inputs lines and internally decoded to access the internal 

registers. 

 In master mode, these lines are used as address outputs lines, A0-A3 bits of memory address on the lines. 

 It is active low, Chip select input line. 

 In the slave mode, it is used to select the chip. 

 In the master mode, it is ignored. 

 A4-A7: 

 

 These are the tristate, buffer, output address lines. 

 In slave mode ,these lines are used as address input lines. 

 In master mode, these lines are used as address outputs lines, A0-A3 bits of memory address on the lines. 

 

 READY: 

 It is an asynchronous input line. 

 In master mode, 

 When ready is high it receives the signal. 

 When ready is low, it adds wait state between S1 and S3 

 In slave mode, this signal is ignored. 

 HRQ: 
 It is used to receiving the hold request signal from the output device. 

 HLDA: 
 It is acknowledgment signal from microprocessor.  

 

 MEMR: 

 It is active low, tristate, Buffered control output line. 

 In slave mode, it is tristated. 

 In master mode, it activated during DMA read cycle.  

  MEMW: 

 It is active low, tristate, Buffered control input line. 

 In slave mode, it is tristated. 

 In master mode, it activated during DMA write cycle. 

 AEN (Address enable): 

 It is a control output line. 

 In master mode ,it is high 

 In slave mode ,it is low 

 Used it isolate the system address, data, and control lines. 

 ADSTB: (Address Strobe) 
 It is a control output line. 

 Used to split data and address line. 

 It is working in master mode only. 

 In slave mode it is ignore. 

 TC (Terminal Count): 

 It is a status of output line. 

 It is activated in master mode only.  

 It is high, it selected the peripheral. 

 It is low, it is free and looking for a new peripheral. 

 MARK: 
 It is a modulo 128 MARK output line. 

 It is activated in master mode only. 

 It goes high, after transferring every 128 bytes of data block. 

 



36 
 

       DMA controller 

 

 A DMA controller is capable of becoming the bus master and supervising a transfer between an I/O 

or mass storage interface and memory. While making a transfer, it must be able to place memory 

address on the bus and send and receive handshaking signals in a manner similar to that of the bus 

control logic. The purpose of a DMA controller is to perform a sequence of transfers (ie a block 

transfer) by stealing bus cycles. 

 A DMA controller is designed to service one or more I/O mass storage interfaces, and each 

interface is connected to the controller by a set of conductors. A portion of a DMA controller for 

servicing a single interface is called a channel. 

 The general organization of a one channel DMA controller and its principal connection is shown in 

figure. In addition to the usual control and status registers, each channel must contain an address 

register and a byte (or word) count register. 

  Initializing  the controller consists of filling these registers with the beginning (or ending) address 

of the memory array that is to be used as a buffer and the number of bytes (words) to be transferred 

.For an input to memory, each time the interface has data to transfer it makes a DMA request. The 

controller then makes a bus request and when it receives a bus grant, it puts the contents of the 

address register on the address bus, sends an acknowledgement back to the interface, and issues I/O 

read and memory write signals. The interface then puts the data on the data bus and drops its 

request. When the memory accepts the data it returns a ready signal to the controller, which then 

increments (or decrements) the address register, decrements the byte (word) count, and drops its bus 

request.   

 Upon the count reaching zero, the process stops and a signal is sent to the processor as an  interrupt 

request or to the interface to notify it that the transfers have terminated. An output is  similarly 

executed  except that the controller issues I/O write and memory read signals and the data are 

transferred in the other direction. 

 DRQ0-DRQ3 (DMA Request): 

 These are the asynchronous peripheral request input signal. 

 The request signals are generated by external peripheral device. 

 DACK0-DACK3: 

  These are the active low DMA acknowledge output lines. 

 Low level indicate that, peripheral is selected for giving the information (DMA cycle). 

           In master mode it is used for chip select 

HLDA becomes active to indicate the processor has placed its buses at high-impedance state as can be seen 

in the timing diagram, there are a few clock cycles between the time that HOLD changes and until HLDA 

changes  

HLDA output is a signal to the requesting device that the processor has relinquished control of its memory 

and I/O space one could call HOLD input a DMA request input and HLDA output a DMA grant signal 



37 
 

 

 Steps in a DMA operation 

 Processor initiates the DMA controller gives device number, memory buffer pointer, called channel 

initialization  
 Once initialized, it is ready for data transfer. 

  When ready, I/O device informs the DMA controller .DMA controller starts the data transfer process 

 Obtains bus by going through bus arbitration 

 Places memory address and appropriate control signals 

 Completes transfer and releases the bus 

 Updates memory address and count value 

 If more to read, loops back to repeat the process 

 Notify the processor when done typically uses an interrupt  

 

Modes of DMA operation 

 

Each channel may be put in one of four modes, with its current mode being determined by bits 7 and6 of 

the channel’s mode register. The four possible modes are    

 

Single transfer mode (01) 

After each transfer the controller will release the bus to the processor for at least one by cycle, but will 

immediately begin testing for DREQ inputs and proceed to steal another cycle as soon as a DREQ line 

becomes active. 

 

Block transfer mode (10) 

DREQ need only be active until DACK becomes active, after which the bus is not released until the entire 

block of data has been transferred.  

 

Demand Transfer mode(00) 

This is similar to the block mode except that DREQ is tested after each transfer. If DREQ is inactive, 

transfers are suspended until DREQ once again becomes active, at which time the block transfer continues 

from the point at which it was suspended. This allows the interface to stop the transfer in the event that its 

device cannot keep up. 

 

 

 



38 
 

 

Cascade Mode (11) 

In this mode 8237s may be cascaded so that more than four channels can be included in the DMA 

subsystem. In cascading the controllers, those in the second level are connected to those in the first level by 

joining HRQ to DREQ and HLDA to DACK, To conserve space, this mode will not be considered further. 

 

In this mode  

Single-cycle mode: DMA data transfer is done one byte at a time 

Burst-mode: DMA transfer is finished when all data has been moved 

a)  Byte     b) Burst  c) Block 

 
 

8. Write in detail about Analog to digital conversion (ADC) 

• The process of analog to digital conversion is a slow process, and the microprocessor has to wait for the 

digital data till the conversion is over. After the conversion is over, the ADC sends end of conversion 

EOC signal to inform the microprocessor that the conversion is over and the result is ready at the output 

buffer of the ADC. These tasks of issuing an SOC pulse to ADC, reading EOC signal from the ADC and 

reading the digital output of the ADC are carried out by the CPU using 8255 I/O ports. 

• The time taken by the ADC from the active edge of SOC pulse till the active edge of EOC signal is called 

as the conversion delay of the ADC. 

•  It may range anywhere from a few microseconds in case of fast ADC to even a few hundred   milliseconds 

in case of slow ADCs. 

• The available ADC in the market use different conversion techniques for conversion of analog signal to 

digitals. Successive approximation techniques and dual slope integration techniques are the most 

popular techniques used in the integrated ADC chip. 



39 
 

 

 

General algorithm for ADC interfacing contains the following steps: 

1. Ensure the stability of analog input, applied to the ADC. 

2. Issue start of conversion (SOC) pulse to ADC 

3. Read end of conversion signal to mark the end of conversion processes. 

4. Read digital data output of the ADC as equivalent digital output. 

 

 

 

• Analog input voltage must be constant at the input of the ADC right from the start of conversion till 

the end of the conversion to get correct results. This may be ensured by a sample and hold circuit 

which samples the analog signal and holds it constant for specific time duration. 

•  The microprocessor may issue a hold signal to the sample and hold circuit. If the applied input 

changes before the complete conversion process is over, the digital equivalent of the analog input 

calculated by the ADC may not be correct. 

 

ADC 0808/0809 : 

     •     The analog to digital converter chips 0808 and 0809 are 8-bit CMOS, successive approximation      

            converters. This technique is one of the fast techniques for analog to digital conversion.  

• The conversion delay is 100μs at a clock frequency of 640 KHz, which is quite low as compared to 

other converters. These converters do not need any external zero or full scale adjustments as they 

are already taken care of by internal circuits.  

• These converters internally have a 3:8 analog multiplexer so that at a time eight different analog 

conversion by using address lines 

• ADD A, ADD B, ADD C. Using these address inputs, multichannel data acquisition system can be 

designed using a single ADC. The CPU may drive these lines using output port lines in case of 

multichannel applications. In case of single input applications, these may be hardwired to select the 

proper input. 

•    There are unipolar analog to digital converters, i.e. they are able to convert only positive analog        

      input voltage to their digital equivalent. These chips do not contain any internal sample and hold     



40 
 

      circuit.If one needs a sample and hold circuit for the conversion of fast signal into equivalent digital     

      quantities, it has to be externally connected at each of the analog inputs. 

 
 

• Vcc  Supply pins +5V 

• GND  GND 

• Vref +  Reference voltage positive +5 Volts maximum. 

• Vref_   Reference voltage negative 0Volts sminimum 

 I/P0–I/P7  Analog inputs 

• ADD A,B,C  Address lines for selecting analog inputs. 

• O7 – O0  Digital 8-bit output with O7 MSB and O0 LSB 

• SOC   Start of conversion signal pin 

• EOC   End of conversion signal pin 

• OE   Output latch enable pin, if high enables output 

• CLK   Clock input for ADC 

 

 

 
 



41 
 

Example: Interfacing ADC 0808 with 8086 using 8255 ports. Use port A of 8255 for transferring digital 

data output of ADC to the CPU and port C for control signals. Assume that an analog input is present at 

I/P2 of the ADC and a clock input of suitable frequency is available for ADC. 

 

• Solution: The analog input I/P2 is used and therefore address pins A,B,C should be 0,1,0 respectively to 

select I/P2. The OE and ALE pins are already kept at +5V to select the ADC and enable the outputs. Port C 

upper acts as the input port to receive the EOC signal while port C 

lower acts as the output port to send SOC to the ADC. 

 

Port A acts as a 8-bit input data port to receive the digital data output from the ADC. The 8255 control 

word is written as follows: 

D7 D6 D5 D4 D3 D2 D1 D0 

1    0  0   1   1   0   0   0 

 

• The required ALP is as follows: 

MOV AL, 98h  ;initialise 8255 as 

OUT CWR, AL  ;discussed above. 

MOV AL, 02h  ;Select I/P2 as analog 

OUT Port B, AL  ;input. 

 

MOV AL, 00h  ;Give start of conversion 

OUT Port C, AL  ; pulse to the ADC 

MOV AL, 01h 

OUT Port C, AL 

MOV AL, 00h 

OUT Port C, AL 

WAIT: IN AL, Port C  ;Check for EOC by 

RCR    ; reading port C upper and 

JNC WAIT   ;rotating through carry. 

IN AL, Port A  ;If EOC, read digital equivalent 

   ;in AL 

HLT    ;Stop 

 

 

 

************************************************************************* 

 

 

9. Explain in detail about Interfacing Digital to Analog Converters 

 

• The digital to analog converters convert binary number into their equivalent voltages. The DAC 

find applications in areas like digitally controlled gains, motors speed controls, programmable gain 

amplifiers etc. 

• AD7523 8-bit Multiplying DAC : This is a 16 pin DIP, multiplying digital to analog converter, 

containing R-2R ladder for D-A conversion along with single pole double thrown NMOS switches 

to connect the digital inputs to the  ladder. 

 



42 
 

 
 

• The pin diagram of AD7523 is shown in fig the supply range is from +5V to +15V, while Vref may 

be any where between -10V to +10V. The maximum analog output voltage will be any where 

between -10V to +10V, when all the digital inputs are at logic high state. 

• Usually a zener is connected between OUT1 and OUT2 to save the DAC from negative transients. 

An operational amplifier is used as a current to voltage converter at the output of AD to convert the 

current output of AD to a proportional output voltage. 

It also offers additional drive capability to the DAC output.An external feedback resistor acts to 

control the gain. One may not connect any external feedback resistor, if no gain control is required.  

     •    EXAMPLE: Interfacing DAC AD7523 with an 8086 CPU running at 8MHZ and write an assembly      

           language program to generate a saw tooth waveform of period 1ms with Vmax 5V. 

     •   Solution: Fig shows the interfacing circuit of AD 74523 with 8086 using 8255. program gives an  

 

ALP to generate a saw tooth waveform using circuit. 

ASSUME CS:CODE 

CODE SEGMENT 

START: MOV AL,80h ;make all ports output 

OUT CW, AL 

AGAIN: MOV AL,00h ;start voltage for ramp 

BACK : OUT PA, AL 

INC AL 

CMP AL, 0FFh 

JB BACK 

JMP AGAIN 

CODE ENDS 

END START 



43 
 

  

• In the above program, port A is initialized as the output port for sending the digital data as input to 

DAC. The ramp starts from the 0V (analog), hence AL starts with 00H. To increment the ramp, the 

content of AL is increased during each execution of loop till it reaches F2H. 

• After that the saw tooth wave again starts from 00H, i.e. 0V (analog) and the procedure is repeated. 

The ramp period given by this program is precisely 1.000625 ms. Here the count F2H has been 

calculated by dividing the required delay of 1ms by the time required for the execution of the 

            loop once. The ramp slope can be controlled by calling a controllable delay after the OUT      

            instruction 

 

 *************************************************************** 

 

10. Draw the block diagram of 8259A and explain how to program 8259A  (April 2010). 

Programmable Interrupt controller (8259) 

Introduction: 

 For applications where we have interrupts from multiple source, we use an external device called a 

priority interrupt controller ( PIC ) to the interrupt signals into a single interrupt input on the processor. 

 It accepts requests from the peripheral equipment, determines which of the incoming requests is of 

the highest importance (priority), ascertains whether the incoming request has a higher priority value than 

the level currently being serviced, and issues an interrupt to the CPU based on this determination. 

Interrupt Request Register (IRR): The interrupts at IRQ input lines are handled by Interrupt Request 

internally. IRR stores all the interrupt request in it in order to serve them one by one on the priority basis. 

• In-Service Register (ISR): This stores all the interrupt requests those are being served, i.e. ISR keeps a 

track of the requests being served. 

 

Priority Resolver : This unit determines the priorities of the interrupt requests appearing  simultaneously. 

The highest priority is selected and stored into the corresponding bit of ISR during INTA pulse. The IR0 

has the highest priority while the IR7 has the lowest one, normally in fixed priority mode. The priorities 

however may be altered by programming the 8259A in rotating priority mode. 

• Interrupt Mask Register (IMR) : This register stores the bits required to mask the interrupt inputs. IMR 

operates on IRR at the direction of the Priority Resolver. 



44 
 

 

• Interrupt Control Logic: This block manages the interrupt and interrupt acknowledge signals to be sent 

to the CPU for serving one of the eight interrupt requests. This also accepts the interrupt acknowledge 

(INTA) signal from CPU that causes the 8259A to release vector address on to the data bus. 

• Data Bus Buffer : This tristate bidirectional buffer interfaces internal 8259A bus to the microprocessor 

system data bus. Control words, status and vector information pass through data buffer during read or write 

operations. 

• Read/Write Control Logic: This circuit accepts and decodes commands from the CPU. This block also 

allows the status of the 8259A to be transferred on to the data bus. 

• Cascade Buffer/Comparator: This block stores and compares the ID’s all the 8259A used in system. 

The three I/O pins CASO-2 are outputs when the 8259A is used as a master. The same pins act as inputs 

when the 8259A is in slave mode. The 8259A in master mode sends the ID of the interrupting slave device 

on these lines. The slave thus selected, will send its preprogrammed vector address on the data bus during 

the next INTA pulse. 

• CS: This is an active-low chip select signal for enabling RD and WR operations of 8259A. INTA 

function is independent of CS. 

• WR: This pin is an active-low write enable input to 8259A. This enables it to accept command words 

from CPU. 

• RD: This is an active-low read enable input to 8259A. A low on this line enables 8259A to release status 

onto the data bus of CPU. 

• D0-D7 : These pins from a bidirectional data bus that carries 8-bit data either to control word or from 

status word registers. This also carries interrupt vector information. 

• CAS0 – CAS2 Cascade Lines: A signal 8259A provides eight vectored interrupts. If more interrupts are 

required, the 8259A is used in cascade mode. In cascade mode, a master 8259A along with eight slaves 

8259A can provide up to 64 vectored interrupt lines. These three lines act as select lines for addressing the 

slave 8259A. 

• PS/EN : This pin is a dual purpose pin. When the chip is used in buffered mode, it can be used as 

buffered enable to control buffer transreceivers. If this is not used in buffered mode then the pin is used as 

input to designate whether the chip is used as a master (SP =1) or slave (SP = 0). 

• INT : This pin goes high whenever a valid interrupt request is asserted. This is used to interrupt the CPU 

and is connected to the interrupt input of CPU. 

• IR0 – IR7 (Interrupt requests) :These pins act as inputs to accept interrupt request to the CPU. In edge 

triggered mode, an interrupt service is requested by raising an IR pin from a low to a high state and holding 

it high until it is acknowledged, and just by latching it to high level, if used in level triggered mode. 

 

A0 

This input signal is used in conjunction with WR and RD signals to write commands into the various 

command registers, as well as reading the various status registers of the chip. This line can be tied directly 

to one of the address lines. 

 

 

  



45 
 

 

Interrupt Sequence in an 8086 system 

 

The Interrupt sequence in an 8086-8259A system is described as follows: 

1. One or more IR lines are raised high that set corresponding IRR bits. 

2. 8259A resolves priority and sends an INT signal to CPU. 

3. The CPU acknowledge with INTA pulse. 

4. Upon receiving an INTA signal from the CPU, the highest priority ISR bit is set and the corresponding 

IRR bit is reset. The 8259 will also release a CALL instruction code (11001101 ) on to the 8 bit data bs 

through its D7  D0 pins. 

5. The CALL instruction  will initiate a second INTA pulse. During this period 8259A releases an 8-bit 

pointer on to a data bus from two more INTA pulses to be sent to the 8259 from the CPU group. 

6.These two INTA pulses allow the 8259 to release its programmed subroutine address onto the data bits. 

The lower 8 bit address is released at the first INTA pulse and the higher  8 bit address is released at the 

second INTA pulse. 

6. This completes the 3 byte CALL instruction released by the 8259. interrupt cycle. The ISR bit is reset at 

the end of the second INTA pulse if automatic end of interrupt (AEOI) mode is programmed. Otherwise ISR 

bit remains set until an appropriate EOI command is issued at the end of interrupt subroutine. 

 

Command Words of 8259A 

The 8259A accepts two types of command words generated by the CPU: 

 

1. Initialization Command Words (ICWs): 

  Before normal operation can begin, each 8259A in the system must be brought to a starting pointed 

by a sequence of 2 to 4 bytes timed by WR pulses. 

 

 



46 
 

 

2. Operational Command Words (OCWs):   

 These are the command words which command the 8259A to operate in various interrupt modes. 

These modes are: 

a. Fully nested mode 

b. Rotating priority mode 

c. Special mask mode 

d. Polled mode 

The OCWs can be written into the 8259A anytime after initialization. 

 

 

INITIALIZATION COMMAND WORDS (ICWS) 

 

Initialization Command Words (ICW): Before it starts functioning, the 8259A must be initialized by 

writing two to four command words into the respective command word registers. These are called as 

initialized command words. 

• If A0 = 0 and D4 = 1, the control word is recognized as ICW1. It contains the control bits for edge/level 

triggered mode, single/cascade mode, call address interval and whether ICW4 is required or not. 

• If A0=1, the control word is recognized as ICW2. The ICW2 stores details regarding interrupt vector 

addresses. The initialization sequence of 8259A is described in form of a flow chart in fig 3 below. 

• The bit functions of the ICW1 and ICW2 are self explanatory as shown in fig below. 

 

 
ICW1 : 

A write command issued to the 8259 with A0 =0 and D4 =1 is interpreted as ICW1,which starts the 

 initialization sequence It specifies 

     1.Single or Multiple 8259 s in the system 

2.4 or 8 bit,interval between interrupt vector locations 

3. The address bits A7  A5  of the CALL instruction 

4. Edge triggered or Level triggered interrupts 

5. ICW4 is needed  or not  

 



47 
 

 

 
 

 

Once ICW1 is loaded, the following initialization procedure is carried out internally. 

a. The edge sense circuit is reset, i.e. by default 8259A interrupts are edge sensitive. 

b. IMR is cleared. 

c. IR7 input is assigned the lowest priority. 

d. Slave mode address is set to 7. 

e. Special mask mode is cleared and status read is set to IRR. 

f. If IC4 = 0, all the functions of ICW4 are set to zero. Master/Slave bit in ICW4 is used in the buffered 

mode only. 

 In 8086 based system A15-A11 of the interrupt vector address are inserted in place of T7 – T3 

respectively and the remaining three bits A8, A9, A10 are selected depending upon the interrupt level, i.e. 

from 000 to 111 for IR0 to IR7.  

 ICW1 and ICW2 are compulsory command words in initialization sequence of 8259A as is evident 

from fig, while ICW3 and ICW4 are optional.  

 The ICW3 is read only when there are more than one 8259A in the system, cascading is used ( 

SNGL=0 ).The SNGL bit in ICW1 indicates whether the 8259A in the cascade mode or not. 

The ICW3 loads an 8-bit slave register. The detailed functions are as follows. 

 In master mode [ SP = 1 or in buffer mode M/S = 1 in ICW4], the 8-bit slave register will be set bit-

wise to 1 for each slave in the system  

Operation Command Words:  

 Once 8259A is initialized using the previously discussed command words for initialisation, it is 

ready for its normal function, i.e. for accepting the interrupts but 8259A has its own way of 

handling the received interrupts called as modes of operation.  



48 
 

 

  

 These modes of operations can be selected by programming, i.e. writing three internal registers  

            called as operation command words. 

 In the three operation command words OCW1, OCW2 and OCW3 every bit corresponds to some 

operational feature of the mode selected, except for a few bits those are either 1 or 0. The three 

operation command words are shown in fig with the bit selection details. 

 

OCW1 

Issued with A0= 1,used to mask the interrupts. To enable all the IR lines, the command word is 00H. 

 
 

 
 

 In OCW2 the three bits, R, SL and EOI control the end of interrupt, the rotate mode and their 

combinations as shown in fig below.  

 The three bits L2, L1 and L0 in OCW2 determine the interrupt level to be selected for operation, if 

SL bit is active i.e. 1. 

 The details of OCW2 are shown in fig. 

 In operation command word 3 (OCW3), if the ESMM bit, i.e. enable special mask mode bit is set to 

1, the SMM bit is neglected. If the SMM bit, i.e. special mask mode. When ESMM bit is 0 the 

SMM bit is neglected. If the SMM bit. i.e. special mask mode bit is 1, the 8259A will enter special 

mask mode provided ESMM=1.  



49 
 

 

 If ESMM=1 and SMM=0, the 8259A will return to the normal mask mode. The details of bits of 

OCW3 are given in fig along with their bit definitions. 

Priority Modes 

 

        Fully Nested Mode 

 This mode is entered after initialization unless another mode is programmed. The interrupt requests are 

ordered in priority from 0 through 7. After the initialization sequence, IR0 has the highest prioirity and IR7 

the lowest. Priorities can be changed. When an interrupt is acknowledged the highest priority request is 

determined and its vector placed on the bus. 

 0 1 2 3 4 5 6 7 

 IR0 IR1 IR2 IR3 IR4 IR5 IR6 IR7 

 

 

 

Highest priority      Lowest Priority 

Now if IR3 is made highest priority the priorities for other interrupt will also be automatically changed. 

 5 6 7 0 1 2 3 4 

 IR0 IR1 IR2 IR3 IR4 IR5 IR6 IR7 

 

 

 Lowest priority Highest priority 

 

End of Interrupt (EOI) 

              The In Service (IS) bit can be reset either automatically following the trailing edge of the last in sequence 

INTA pulse (when AEOI bit in ICW1 is set) or by a command word that must be issued to the 8259A 

before returning from a service routine (EOI command). An EOI command must be issued twice if in the 

Cascade mode, once for the master and once for the corresponding slave. 

  

Automatic Rotation(equal Priority): This is used in the applications where all the interrupting devices 

are of equal priority. 

         • In this mode, an interrupt request IR level receives priority after it is served while the next device to be 

served gets the highest priority in sequence. Once all the devices are served like this, the first device again 

receives highest priority. 

Specific rotation mode(Specific Priority) 

         The programmer can change the priorities by programming the bottom priority and the fixing all other 

priorities.ie if IR4 is programmed as the lowest priority, then IR% will have the highest one. 

• Automatic EOI Mode: Till AEOI=1 in ICW4, the 8259A operates in AEOI mode.  

     Special mask mode 

• In the special mask mode, when a mask bit is set in OCW1,it inhibits further interrupts at that level 

and enables interrupts from all other levels that are not masked. Thus any interrupts may be 

selectively enabled by loading the mask register. 

    Poll command 

• Service to devices is achieved by software using a poll command. So INTA sequence is not needed. It 

is used to expand the number of priorities levels to more than 64. 



50 
 

 

 

12. Explain in detail about Traffic light Control 

 Traffic lights, which may also be known as stop lights, traffic lamps, traffic signals, signal lights, robots or 

semaphore, are signaling devices positioned at road intersections, pedestrian crossings and other locations 

to control competing flows of traffic 

ABOUT THE COLORS OF TRAFFIC LIGHT CONTROL 

 Traffic lights alternate the right of way of road users by displaying lights of a standard color (red, 

yellow/amber, and green), using a universal color code (and a precise sequence to enable comprehension 

by those who are color blind). 

 Illumination of the red signal prohibits any traffic from proceeding. Usually, the red light contains some 

orange in its hue, and the green light contains some blue, for the benefit of people with red-green color 

blindness, and "green" lights in many areas are in fact blue lenses on a yellow light (which together appear 

green). 

 

INTERFACING TRAFFIC LIGHT WITH 8086 

 The Traffic light controller section consists of 12 Nos. point LEDs arranged by 4 Lanes in Traffic light 

interface card. Each lane has Go (Green), Listen (Yellow) and Stop(Red) LED is being placed 

PIN ASSIGNMENT WITH 8086 



51 
 

  



52 
 

 

 

 

 

 

 

 

 



53 
 

 

ASSEMBLY PROGRAM TO INTERFACE TRAFFIC LIGHT WITH 8086 

 

     

 

 



54 
 

13. Discuss the following in detail 

(i). Interfacing LED with 8086 

(ii) Interfacing LED with 8086 

(iii) Keyboard interface 

LED (LIGHT EMITTING DIODES) 

 Light Emitting Diodes (LED) is the most commonly used components, usually for displaying pins digital 

states. Typical uses of LEDs include alarm devices, timers and confirmation of user input such as a mouse 

click or keystroke. 

INTERFACING LED 

 Fig. 1 shows how to interface the LED to microprocessor. As you can see the Anode is connected through 

a resistor to GND & the Cathode is connected to the Microprocessor pin. So when the Port Pin is HIGH the 

LED is OFF & when the Port Pin is LOW the LED is turned ON.  

 

INTERFACING LED WITH 8086 We now want to flash a LED in 8086 Trainer Board. It works by 

turning ON a LED & then turning it OFF & then looping back to START. However the operating speed of 

microprocessor is very high 

PIN ASSIGNMENT WITH 8086 

 



55 
 

 

CIRCUIT DIAGRAM TO INTERFACE LED WITH 8255 

 

 



56 
 

ASSEMBLY PROGRAM TO ON AND OFF LED USING 8086 

Title : Program to Blink LEDs 

 

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’  

LCD INTERFACING 

 

Liquid Crystal Display 

  Introduction:  

  Liquid Crystal displays are created by sandwiching a thin 10-12 μm layer of a liquid-crystal 

fluid between two glass plates. A transparent, electrically conductive film or backplane is put on the 

rear glass sheet. Transparent sections of conductive film in the shape of the desired characters are 

coated on the front glass plate. 

When a voltage is applied between a segment and the backplane, an electric field is created in the region 

under the segment. This electric field changes the transmission of light through the region under the 

segment film. 

There are two commonly available types of LCD  

• Dynamic scattering and field effect. 

• Dynamic scattering types of LCD: It scrambles the molecules where the field is present. This 

produces an etched-glass-looking light character on a dark background. 

 

Field-effect types use polarization to absorb light where the electric field is present. This produces dark 

characters on a silver- gray background. 

Most LCD’s require a voltage of 2 or 3 V between the backplane and a segment to turn on the segment. We 

cannot just connect the backplane to ground and drive the segment with the outputs of a TTL decoder. The 

reason for this is a steady dc voltage of more than about 50mV is applied between a segment and the To 



57 
 

prevent a dc buildup on the segments, the segment-drive signals for LCD must be square waves with a 

frequency of 30 to 150 Hz. 

Even if you pulse the TTL decoder, it still will not work because the output low voltage of TTL devices is 

greater than 50mV. CMOS gates are often used to drive LCDs. 

 Advantages of LCD 

o LCD is finding widespread use replacing LEDs 

o The declining prices of LCD 

o The ability to display numbers, characters, and graphics 

o Incorporation of a refreshing controller into the LCD, thereby relieving the CPU of the 

task of refreshing the LCD 

o Ease of programming for characters and Graphics 

 

 
LCD Command Codes 

 
 



58 
 

 

 To send any of the commands to the LCD, make pin RS=0. For data, make RS=1. Then send a high-to-low    

 pulse to the E pin to enable the internal latch of the LCD. This is shown in the code below. 

     ;calls a time delay before sending next data/command 

;P1.0-P1.7 are connected to LCD data pins D0-D7 

;P2.0 is connected to RS pin of LCD 

;P2.1 is connected to R/W pin of LCD 

;P2.2 is connected to E pin of LCD 

ORG 0H 

MOV A,#38H ;INIT. LCD 2 LINES, 5X7 MATRIX 

ACALL COMNWRT ;call command subroutine 

ACALL DELAY ;give LCD some time 

MOV A,#0EH ;display on, cursor on 

ACALL COMNWRT ;call command subroutine 

ACALL DELAY ;give LCD some time 

MOV A,#01 ;clear LCD 

ACALL COMNWRT ;call command subroutine 

ACALL DELAY ;give LCD some time 

MOV A,#06H ;shift cursor right 

ACALL COMNWRT ;call command subroutine 

ACALL DELAY ;give LCD some time 

MOV A,#84H ;cursor at line 1, pos. 4 

ACALL COMNWRT ;call command subroutine 

ACALL DELAY ;give LCD some time 

MOV A,#’N’ ;display letter N 

ACALL DATAWRT ;call display subroutine 

ACALL DELAY ;give LCD some time 

MOV A,#’O’ ;display letter O 

ACALL DATAWRT ;call display subroutine 

AGAIN: SJMP AGAIN ;stay here 

COMNWRT: ;send command to LCD 

MOV P1,A ;copy reg A to port 1 

CLR P2.0 ;RS=0 for command 

CLR P2.1 ;R/W=0 for write 

SETB P2.2 ;E=1 for high pulse 

ACALL DELAY ;give LCD some time 

CLR P2.2 ;E=0 for H-to-L pulse 

RET 

DATAWRT: ;write data to LCD 

MOV P1,A ;copy reg A to port 1 

SETB P2.0 ;RS=1 for data 

CLR P2.1 ;R/W=0 for write 

SETB P2.2 ;E=1 for high pulse 

ACALL DELAY ;give LCD some time 

CLR P2.2 ;E=0 for H-to-L pulse 

RET 

DELAY: MOV R3,#50 ;50 or higher for fast CPUs 

HERE2: MOV R4,#255 ;R4 = 255 

HERE: DJNZ R4,HERE ;stay until R4 becomes 0 

DJNZ R3,HERE2 

RET 

END 



59 
 

 

 

;Check busy flag before sending data, command to LCD 

;p1=data pin 

;P2.0 connected to RS pin 

;P2.1 connected to R/W pin 

;P2.2 connected to E pin 

 

ORG 0H 

MOV A,#38H ;init. LCD 2 lines ,5x7 matrix 

ACALL COMMAND ;issue command 

MOV A,#0EH ;LCD on, cursor on 

ACALL COMMAND ;issue command 

MOV A,#01H ;clear LCD command 

ACALL COMMAND ;issue command 

MOV A,#06H ;shift cursor right 

ACALL COMMAND ;issue command 

MOV A,#86H ;cursor: line 1, pos. 6 

ACALL COMMAND ;command subroutine 

MOV A,#’N’ ;display letter N 

ACALL DATA_DISPLAY 

MOV A,#’O’ ;display letter O 

ACALL DATA_DISPLAY 

HERE:SJMP HERE ;STAY HERE 

 

The Following fig shows how two CMOS gate outputs can be connected to drive an LCD segment and 

backplane.  

• The off segment receives the same drive signal as the backplane. There is never any voltage between    

   them, so no electric field is produced. The waveform for the on segment is 180 out of phase with the    

   backplane signal, so the voltage between this segment and the backplane will always be +V.  

• The logic for this signal, a square wave and its complement. To the driving gates, the segment-backplane    

   sandwich appears as a somewhat leaky capacitor. 

• The CMOS gates can be easily supply the current required to charge and discharge this small capacitance. 

• Older inexpensive LCD displays turn on and off too slowly to be multiplexed the way we do LED    

   display. 

• At 0c some LCD may require as much as 0.5s to turn on or off. To interface to those types we use a non    

   multiplexed driver device. 

• More expensive LCD can turn on and off faster, so they are often multiplexed using a variety of    

   techniques. 

• In the following section we show you how to interface a non multiplexed LCD to a microprocessor such    

  as SDK-86. 

• Intersil ICM7211M can be connected to drive a 4-digit, non multiplexed, 7- segment LCD display. 

• The 7211M input can be connected to port pins or directly to microcomputer bus.We have connected the    

  CS inputs to the Y2 output of the 74LS138 port decoder. 

• According to the truth table the device will then be addressable as ports with a base address of FF10H.    

  SDK-86 system address lines A2 is connected to the digit-select input (DS2) and system address lines A1     

  is connected to the DS1 input. This gives digit 4 a system address of FF10H. 

 



60 
 

  

  Digit 3 will be addressed at FF12H, digit 2 at FF14H and digit 1 at FF16H. 

• The data inputs are connected to the lower four lines of the SDK-86 data bus.The oscillator input is left    

  open. To display a character on one of the digits, you simply keep the 4-bit hex code for that digit in the    

  lower 4 bits of the AL register and output it to the system address for that digit. 

 

• The ICM7211M converts the 4-bit hex code to the required 7-segment code. 

• The rising edge of the CS input signal causes the 7-segment code to be latched in the output latches for   

   the address digit. 

• An internal oscillator automatically generates the segment and backplane drive waveforms as in fig . For    

  interfacing with the LCD displays which can be multiplexed the Intersil ICM7233 can be use. 

 
 

 



61 
 

 

KEYBOARD INTERFACING 

Keyboards are organized in a matrix of rows and columns 

 The CPU accesses both rows and columns through ports. Therefore, with two 8-bit ports, an 8 x 8 

matrix of keys can be connected to a microprocessor 

 When a key is pressed, a row and a column make a contact, Otherwise, there is no connection 

between rows and columns 

 In IBM PC keyboards, a single microcontroller takes care of hardware and software interfacing .A 

4x4 matrix connected to two ports 

 The rows are connected to an output port and the columns are connected to an input port 

KEYBOARD 

 
It is the function of the microcontroller to scan the keyboard continuously to detect and identify the 

key pressed  To detect a pressed key, the microcontroller grounds all rows by providing 0 to the 

output latch, then it reads the columns 

 If the data read from columns is D3 – D0 = 1111, no key has been pressed and the process 

continues till key press is detected 

 If one of the column bits has a zero, this means that a key press has occurred. For example, if 

D3 – D0 = 1101, this means that a key in the D1 column has been pressed 

 After detecting a key press, microcontroller will go through the process of identifying the key 

Starting with the top row, the microcontroller grounds it by providing a low to row D0 only 

 It reads the columns, if the data read is all 1s, no key in that row is activated and the process is 

moved to the next row 

 It grounds the next row, reads the columns, and checks for any zero 

 This process continues until the row is identified 

 After identification of the row in which the key has been pressed 

 Find out which column the pressed key belongs to 

 Corresponding key is displayed. 

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ 



62 
 

 

 

14.Explain in detail about alarm controller. 

 

DS12887 RTC INTERFACING 

This interfacing and programming of the DS12C887 real time clock (RTC) chip. 

DS12887 RTC INTERFACING 

 
 The RTC provides accurate time and date for many applications. 

 The RTC chip in the IBM PC provides time components of hour, minute and second, in 

addition to date / calendar components of year, month and day. 

 It uses an internal battery, which keeps the time and date even when the power is off (over 10 

years).  

 One of the most widely used RTC chip is the DS 12887. 

 It keeps track of “seconds, minutes, hours, days, day of week, date, month, and year with leap-

year compensation valid up to year 2100″. 

 The above information is provided in both binary (hex) and BCD formats. The DS 12887 

supports both 12-hour and 24-hour clock modes with AM and PM in the 12-hour mode. 

 It also supports the Daylight Savings Time option. The DS 12887 uses CMOS technology to 

keep the power consumption low and it has the designation DS12C887, where C is for CMOS. 

The DS12887 has a total of 128 bytes of nonvolatile RAM.  

 It uses 14 bytes of RAM for clock/calendar and control registers, and the other 114 bytes of 

RAM are for general-purpose data storage.  

 Next we describe the pins of the DS 12887. See Figure 16-1. 

 

Vcc 

Pin 24 provides external supply voltage to the chip. The external voltage source is +5V. When 

Voltage falls below the 3V level, the external source is switched off and the internal lithium battery 

provides power to the RTC. 

GND 

Pin 12 is the ground. 



63 
 

 

 

 ADO-AD7 

The multiplexed address/data pins provide both addresses and data to the chip. Addresses are latched 

into the DS 12887 on the falling edge of the AS (ALE) signal.  

A simple way of connecting the DS 12887 to the 8051 is shown in Figure 16-2. 

AS (ALE) 

AS (address strobe) is an input pin. On the falling edge it will cause the addresses to be latched into 

the DS 12887. The AS pin is used for demultiplexing the address and data and is connected to the 

ALE pin of the 8051 chip. 

MOT 

This is an input pin that allows the choice between the Motorola and Intel microcontroller bus timings. 

The MOT pin is connected to GND for the Intel timing. That means when we connect DS 12887 to the 

8051, MOT = GND. 

DS 

Data strobe or read is an input. When MOT = GND for Intel timing, the DS pin is called the RD (read) 

signal and is connected to the RD pin of the 8051. 

R/W 

Read/Write is an input pin. When MOT = GND for the Intel timing, the R/W pin is called the WR 

(write) signal and is connected to the WR pin of the 8051. 

CS 

Chip select is an input pin and an active low signal. When the DS 12887 is in write-protected state, all 

inputs are ignored. 

 
IRQ 

Interrupt request is an output pin and active low signal. To use IRQ, the interrupt-enable bits in 

register B must be set high. The interrupt feature of the DS12287 is discussed in Section 16.3. 

SQW 

Square wave is an output pin. We can program the DS 12887 to provide up to 15 different square 

waves. The frequency of the square wave is set by programming register A. 

RESET 

Pin 18 is the reset pin. It is an input and is active low (normally high). In most applications the reset 

pin is connected to the Vcc pin.  

 



64 
 

 

 

 

Address map of the DS12887 

The DS12887 has a total of 128 bytes of RAM space with addresses 00 -7FH. The first ten locations, 

00 – 09, are set aside for RTC values of time, calendar, and alarm data.  

The next four bytes are used for the control and status registers. They are registers A, B, C, and D and 

are located at addresses 10-13 (OA – OD in hex).  

The next 114 bytes from addresses OEH to 7FH are available for data storage. The entire 128 bytes of 

RAM are accessible directly for read or write except the following: 

1.  

Registers C and D are read-only. 

2.  

D7 bit of register A is read-only. 

3.  

The high-order bit of the seconds byte is read-only. 

 

 
Figure 16-3. DS12887 Address Map 

 

Figure 16.3 shows the address map of the DS 12887. 

Time, calendar, and alarm address locations and modes 

The byte addresses 0-9 are set aside for the time, calendar, and alarm data. Table 

16-1 shows their address locations and modes. Notice the data is available in both 

binary (hex) and BCD formats. 

 

Turning on the oscillator for the first time 

The DS12887 is shipped with the internal oscillator turned off in order to save the lithium 

battery. We need to turn on the oscillator before we use the time keeping features of the DS 12887. To 

do that, bits D6 – D4 of register A must be set to value 010. See Figure 16-4 for details of register A. 

 

The following code shows how to access the DS12887′s register A and is written for the Figure 

16-2 connection. In Figure 16-2, the DS 12887 is using the external memory space of the 8051 and is 

mapped to address space of 00 – 7FH since CS = 0. See Chapter 14 for a discussion of external 

memory in the 8051. For the programs in this chapter, we use instruction “MOVX A, @RO” since the 



65 
 

address is only 8-bit. In the case of a 16-bit address, we must use “MOVX A, @DPTR” as was shown 

in Chapter 14. Examine the following code to see how to access the DS12887 of Figure 16-2. 

 

 

 

Table 16-1: DS12887 Address Location for Time, Calendar, and Alarm 

 
 

 

 

 
Figure 16-4. Register A Bits for Turning on the DS12887′s Oscillator 

Setting the time 

When we initialize the time or date, we need to set D7 of register B to 1. This will prevent any 

update at the middle of the initialization. After setting the time and date, we need to make D7 

= 0 to make sure that the clock and time are updated. The update occurs once per second. The 



66 
 

following code initializes the clock at 16:58:55 using the BCD mode and 24-hour clock mode 

with daylight savings time. See also Figure 16-5 for details of register B. 

 

 

 
Figure 16-5. Some Major Bits of Register B 

Setting the date 

The following shows how to set the date to October 19th, 2004. Notice that when we initialize 

time or date, we need to set D7 of register B to 1. 



67 
 

 
RTCs setting, reading, displaying time and date 

The following is a complete Assembly code for setting, reading, and displaying the time 

and date. The times and dates are sent to the screen via the serial port after they are 

converted from BCD to ASCII. 



68 
 

 



69 
 

 



70 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 
 

 

 

 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

1 

UNIT – IV     MICROCONTROLLER 

  

4.1: Introduction: 

Microcontroller: 

 A Microcontroller is a single chip computer. 

 A CPU with all the peripherals like RAM, ROM, I/O Ports, Timers, and ADCs etc. on the same chip. 

 For Ex: Motorola 6811, Intel 8051, Zilog Z8 and PIC 16X etc… 

Microprocessor: 

 A CPU built into a single VLSI chip is called a microprocessor.  

 It is a general-purpose device and additional external circuitry is added to make it a microcomputer.  

 The microprocessor contains arithmetic logic unit (ALU), Control unit, Instruction register, Program 

counter (PC), clock circuit (internal or external), reset circuit (internal or external) and registers.  

 But the microprocessor has no on chip I/O Ports, Timers, Memory etc.  

 For example, Intel 8085 is an 8-bit microprocessor and Intel 8086/8088 a 16-bit microprocessor.  

 The block diagram of the Microprocessor is shown in Fig.1 

 

Fig.1: Block diagram of a Microprocessor. 

Architecture of 8051 – Special Function Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set - 

Addressing modes - Assembly language programming. 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

2 

MICROCONTROLLER : 

 A microcontroller is an integrated single chip, which consists of CPU, RAM, EPROM/PROM/ROM, 

I/O ports, timers, interrupt controller.  

 For example, Intel 8051 is 8-bit microcontroller and Intel 8096 is 16-bit microcontroller. 

 The block diagram of Microcontroller is shown in Fig.2. 

 

Fig.2.Block Diagram of a Microcontroller 

Distinguish between Microprocessor and Microcontroller 

S.No Microprocessor Microcontroller 

1 A microprocessor is a general 

purpose device. 

A microcontroller is a dedicated chip which 

is also called as single chip computer. 

2 A microprocessor does not contain 

on chip I/O Ports, Timers, 

Memories etc. 

A microcontroller includes RAM, ROM, 

serial and parallel interface, timers, 

interrupt circuitry in a single chip. 

3 Microprocessor is used as the CPU 

in microcomputer system. 

Microcontroller is used to perform control-

oriented applications. 

4 Microprocessor instructions are  

nibble or byte addressable 

Microcontroller instructions are both bit 

addressable as well as byte addressable. 

5 Microprocessor based system 

design is complex and expensive 

Microcontroller based system design is  

simple and cost effective 

6 The Instruction set of 

microprocessor is complex with 

large number of instructions. 

The instruction sets are simple with less 

number of instructions.  

 

***************************************************************** 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

3 

4.2: INTEL 8051 MICRCONTROLLER:   

Draw the architectural block diagram of 8051 microcontroller and explain. (NOV 2011, MAY 2010, NOV 

2009, NOV2008, May 2008, MAY 2007, MAY 2006, NOV 2016, May 2016) 

Features of 8051 Microcontroller: 

 

The 8051 is an 8-bit Controller: 

 The CPU can works on only 8 bits of data at a time 

 The 8051 has 

 128 bytes of RAM 

 4K bytes of on-chip ROM 

 Two timers 

 One serial port 

 Four I/O ports, each 8 bits wide 

 6 interrupt sources 

ARCHITECTURE & BLOCK DIAGRAM OF 8051 MICROCONTROLLER: 

 It has hardware architecture with RISC (Reduced Instruction Set Computer) concept. 

 The block diagram of 8051 microcontroller is shown in Fig 3.   

 8051 has 8-bit ALU.  

 ALU can perform all the 8-bit arithmetic and logical operations in one machine cycle.  

 The ALU is associated with two registers A & B 

A and B Registers: 

 The A and B registers are special function registers. 

 A & B registers hold the results of many arithmetic and logical operations of 8051. 

 The A register is also called the Accumulator. 

 A register is used as a general register to accumulate the results of a large number of instructions. 

 By default, it is used for all mathematical operations and data transfer operations between CPU and 

external memory.  

 The B register is mainly used for multiplication and division operations along with A register.  

 Ex: MUL AB    :                   DIV AB. 

 It has no other function other than as a store data. 

R registers:   

 "R" registers are a set of eight registers that are named R0, R1, etc. up to R7.  

 These registers are used as auxiliary registers in many operations.  

 The "R" registers are also used to temporarily store values. 

 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

4 

 

Fig.3. Block Diagram of 8051 Microcontroller 

Program Counter (PC) :  

 8051 has a 16-bit program counter. 

 The program counter holds address of the next instruction to be executed.  

 After execution of one instruction, the program counter is incremented.  

Data Pointer Register (DPTR):  

 It is a 16-bit register which is the only user-accessible.   

 DPTR is used to point the data. 8051 will access external memory at the address indicated by DPTR.  

 DPTR can also be used as two 8-registers DPH and DPL. 

Stack Pointer Register (SP) :   

 It is an 8-bit register which stores the address of the stack top.  

 When a value is pushed onto the stack, the 8051 first increments the value of SP and then stores the 

value.  

 Similarly when a value is popped off the stack, the 8051 returns the value from the memory location 

indicated by SP and then decrements the value of SP.  

 Since the SP is only 8-bit wide. 

 It is incremented or decremented by two.  

 SP is modified directly by the 8051 by six instructions: PUSH, POP, ACALL, LCALL, RET, and RETI.  

 It is also used intrinsically whenever an interrupt is triggered. 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

5 

 

Fig 3a: Internal architecture diagram of 8051 Microcontroller 

 

Fig: Structure of registers 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

6 

STACK in 8051 Microcontroller:  

 The stack is a part of RAM used by the CPU to store information temporarily.  

 This information may be either data or an address. 

 The register used to access the stack is called the Stack pointer (SP). 

 SP is an 8-bit register. So, it can take values of 00 to FF H. 

 When the 8051 is powered up, the SP register contains the value 07.i.e the RAM location value 08 is the 

first location being used for the stack by the 8051 controller. 

 There are two important instructions to handle stack. One is the PUSH and the other is the POP.  

 The loading of data from CPU registers to the stack is done by PUSH.  

 The loading of the contents of the stack back into a CPU register is done by POP. 

Program Status Register (PSW):  

Give PSW of 8051 and describe the use of each bit in PSW. (NOV 2015) 

 The 8051 has an 8-bit PSW register which is also known as Flag register.  

 In the 8-bit register only 6-bits are used by 8051.The two unused bits are user definable bits.  

 In the 6-bits, four of them are conditional flags. They are Carry –CY, Auxiliary Carry-AC, Parity-P, and 

Overflow-OV.  

 These flag bits indicate some conditions of result after an instruction was executed.   

 

 The bits PSW3 and PSW4 are denoted as RS0 and RS1. 

 These bits are used to select the bank registers of the RAM location.  

 The meaning of various bits of PSW register is shown below. 

CY                              PSW.7                       Carry Flag 

AC                              PSW.6                       Auxiliary Carry Flag 

FO                              PSW.5                        Flag 0 available for general purpose 

RS1                            PSW.4                        Register Bank select bit 1 

RS0                            PSW.3                        Register bank select bit 0 

OV                             PSW.2                        Overflow flag 

---                               PSW.1                        User definable flag 

P                                 PSW.0                       Parity flag .set/cleared by hardware. 

 

 

 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

7 

 The selection of the register Banks and their addresses are given below.  

RS1 RS0 Register Bank Address 

0 0 0 00H-07H 

0 1 1 08H-0FH 

1 0 2 10H-17H 

1 1 3 18H-1FH 

 

RAM & ROM: 

 The 8051 microcontroller has 128 bytes of Internal RAM and 4KB of on chip ROM. 

 The RAM is also known as Data memory and the ROM is known as program (Code) memory.  

 Code memory holds program that is to be executed.   

 Program Address Register holds address of the ROM/ Flash memory. 

 Data Address Register holds address of the RAM. 

I/O ports: 

 The 8051 microcontroller has 4 parallel I/O ports, each of 8-bits. 

 So, it   provides 32 I/O lines for connecting the microcontroller to the peripherals.  

 The four ports are P0 (Port 0), P1 (Port1), P2 (Port 2) and P3 (Port3). 

**************************************************************************************** 

4.3: Memory organization :  

Explain in detail the internal memory organization of 8051 microcontroller (NOV 2014, May 2012, NOV 

2011, NOV 2010, May 2010, MAY 2009, NOV 2008, NOV 2007) 

 The 8051 microcontroller has 128 bytes of Internal RAM and 4kB of on chip ROM. 

 The RAM is also known as Data memory and the ROM is known as program (Code) memory.  

 Code memory holds the actual 8051 program to be executed.   

 In 8051, memory is limited to 64KB.  

 Code memory may be found on-chip, as ROM or EPROM.  

 It may also be stored completely off-chip in an external ROM / EPROM.  

 The 8051 has only 128 bytes of Internal RAM but it supports 64KB of external RAM.    

 Since the memory is off-chip, it is not as flexible for accessing and is also slower.  

 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

8 

Structure of Internal RAM OF 8051(Data Memory) : 

Explain the Data memory structure of 8051. (NOV 2011) 

 Internal RAM is found on-chip on the 8051. So it is the fastest RAM available.  

 It is flexible in terms of reading, writing and modifying its contents. 

 Internal RAM is volatile. 

 When the 8051 is reset, internal RAM is cleared.  

 The 128 bytes of internal RAM is organized as below. 

 Four register banks (Bank0, Bank1, Bank2 and Bank3) each of 8-bits (total 32 bytes).  

 The default   bank   register   is Bank0.  

 The remaining Banks are selected with the help of RS0 and RS1 bits of PSW Register. 

 16 bytes of bit addressable area   and 

 80 bytes of general purpose area (Scratch pad memory) of internal RAM as shown in the diagram below.  

 This area is utilized by the microcontroller as a storage area for the operating stack. 

 The 32 bytes of RAM from address 00 H to 1FH are used as working registers organized as four banks 

of eight registers each.  

 The registers are named as R0-R7.  

 Each register can be addressed by its name or by its RAM address.     

                                      For example:   MOV A, R7       or     MOV R7,#05H 

 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

9 

Structure of Internal ROM (On –chip ROM / Program Memory / Code Memory):   

 The 8051 microcontroller has 4KB of on chip ROM, but it can be extended up to 64KB. 

 This ROM is also called program memory or code memory.   

 The CODE segment is accessed using the program counter (PC) for opcode fetches and by DPTR for 

data.  

 The external ROM is accessed when the EA pin is connected to ground or the contents of program 

counter exceeds 0FFFH. 

 When the Internal ROM address is exceeded the 8051 automatically fetches the code bytes from the 

external program memory. 

 
*************************************************************************************** 

4.4: SPECIAL FUNCTION REGISTERS (SFRs) 

Write the available special function registers in 8051. Explain each register with its format and functions. 

(April 2017, NOV 2015) 

 In 8051 microcontroller, there are registers which uses the RAM addresses from 80h to FFh.  

 They are used for certain specific operations. These registers are called Special Function Registers 

(SFRs). 

 Most of SFRs are bit addressable and other few registers are byte addressable.  

 In these SFRs, some of them are related to I/O ports (P0, P1, P2 and P3) and some of them are for 

control operations (TCON, SCON & PCON). 

 Remaining are the auxiliary SFRs, that they don't directly configure the 8051. 

 The list of SFRs and their functional names are given below. 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

10 

 The * indicates the bit addressable SFRs 

S.No Symbol Name of SFR Address (Hex) 

1 ACC* Accumulator 0E0 

2 B* B-Register 0F0 

3 PSW* Program Status word register 0DO 

4 SP Stack Pointer Register 81 

5  

DPTR 

DPL  Data pointer low byte 82 

DPH Data pointer high byte 83 

6 P0* Port 0 80 

 P1* Port 1 90 

8 P2* Port 2 0A 

9 P3* Port 3 0B 

10 IP* Interrupt Priority control 0B8 

11 IE* Interrupt Enable control 0A8 

12 TMOD Timer mode register 89 

13 TCON* Timer control register 88 

14 TH0 Timer 0 Higher byte 8C 

15 TL0 Timer 0 Lower byte 8A 

16 TH1 Timer 1Higher byte 8D 

17 TL1 Timer 1 lower byte 8B 

18 SCON* Serial control register 98 

19 SBUF Serial buffer register 99 

20 PCON Power control register 87 

Table: Special Function Registers 

 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

11 

4.5: Input / Output (I/O) ports : 

What are the I/O ports available in 8051 and explain? (MAY 2014, NOV 2012, MAY2010, NOV2009) 

Enumerate about the ports available in 8051. (MAY 2014) 

Explain parallel port architecture of 8051 microcontroller. (NOV 2012) 

Explain each PORT circuitry available in 8051. (NOV 2007) 

PARALLEL I /O PORTS   : 

 The 8051 microcontroller has 4 parallel I/O ports, each of 8-bits. 

 So, it   provides 32 I/O lines for connecting the microcontroller to the peripherals.  

 The four ports are P0 (Port 0), P1 (Port1), P2 (Port 2) and P3 (Port3). 

 When resetting, all the ports are output ports.  

 In order to make them input, all the ports must be set. This is normally done by the instruction “SETB”. 

 Ex:  MOV A,#0FFH         ;  A =  FF  

MOV P0, A                ; Make P0 an input port 

PORT 0: 

 Port 0 is an 8-bit I/O port with dual purpose.  

 Port 0 does not have pull-up resistors internally, so pull-up resistors are to be connected externally as 

shown in the figure. 

 

Dual role of port 0:  

 If external memory is used, port 0 is used as lower order address/data bus (AD0-AD7), otherwise port 0 

is used as input or output port.  

 The 8051 multiplexes address and data through port 0 to reduce the pins.  

 ALE indicates whether P0 has address or data.  

 When ALE = 0, it provides data D0-D7, and when ALE =1, it provides address. 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

12 

Port 0 circuit: 

 Port-0 can be configured as a bidirectional I/O port or it can be used for lower order address/data lines. 

 When control is '1', the port is used for address/data interfacing.  

 When the control is '0', the port can be used as a bidirectional I/O port. 

 

Fig: Port 0 Circuit 

Port 1:  

 Port 1 occupies a total of 8 pins. It has no dual application and acts only as I/O port.  

 This port does not need any pull-up resistors because pull-up resistors connected internally.  

Port 1 circuit: 

 Port-1 does not have any alternate function i.e. it is dedicated solely for I/O interfacing. 

 

Fig: Port 1 Circuit 

Port 2:  

 Port 2 is an 8 bit parallel port. It can be used as input or output port.  

 As this port is provided with internal pull-up resistors, it does not need any external pull-up resistors. 

Dual role of port 2:  

 Port 2 lines are also associated with the higher order address lines A8-A15.  



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

13 

 In 8051-based systems, port 2 is used along with P0 to provide the 16-bit address for the external 

memory.  

 8031/8051 is capable of accessing 64K bytes of external memory. 

 When control is '1', the port is used for address interfacing.  

 When the control is '0', the port can be used as a bidirectional I/O port. 

 

 

Fig: Port 2 Circuit 

PORT 3:  

Explain the use of port 3 of 8051 for interrupt signals. (NOV 2009) 

 Port3 is an 8-bit parallel port with dual function.  

 The port pins can be used for I/O operations as well as for control operations.  

 Port 3 also do not need any external pull-up resistors as they are provided internally.  

 The details of additional operations are given below in the table.  

S.No       Port 3 bit              Pin No         Function 

1 P3.0 10 RxD 

2 P3.1 11 TxD 

3 P3.2 12 

 
4 P3.3 13 

 
5 P3.4 14 T0 

6 P3.5 15 T1 

7 P3.6 16 
 

8 P3.7 17 
 

Table: PORT 3 alternate functions 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

14 

Alternate Functions of Port 3:  

 P3.0 and P3.1 are used for the RxD (Receive Data) and TxD (Transmit Data) as serial communications 

signals. Bits P3.2 and P3.3 are meant for external interrupts.  

 Bits P3.4 and P3.5 are used for Timers 0 and Timer 1. 

 P3.6 and P3.7 are used to provide the write and read signals of external memories connected in 8031/ 

8051 based systems. 

 

Fig: Port 3 Circuit 

**************************************************************************** 

4.6: Interrupt of 8051 Microcontroller: 

Explain interrupt structure of 8051 microcontroller. (NOV 2011, MAY 2009) 

Interrupt Structure:    

 An interrupt is an external or internal event that disturbs the microcontroller to inform it that a device 

needs its service.  

 The program which is associated with the interrupt is called the interrupt service routine (ISR) or 

interrupt handler.  

 Upon receiving the interrupt signal, the microcontroller finishes current operation and saves the PC on 

stack.   

 Jumps to a fixed location in memory depending on type of interrupt. 

 Starts to execute the interrupt service routine until RETI. 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

15 

 Upon executing the RETI the microcontroller returns to the place where it was interrupted. Get pop PC 

from stack. 

 The 8051 microcontroller has FIVE interrupts in addition to Reset. They are  

 Timer 0 overflow  Interrupt 

 Timer 1 overflow Interrupt 

 External Interrupt 0(INT0) 

 External Interrupt 1(INT1) 

 Serial Port Interrupt 

 Each interrupt has a specific place in code memory where program execution begins. 

 External Interrupt 0:  0003 H 

 Timer 0 overflow:     000B H 

 External Interrupt 1: 0013 H 

 Timer 1 overflow:     001B H 

 Serial  Interrupt :          0023 H 

 Upon reset all Interrupts are disabled & do not respond to the Microcontroller.  

 These interrupts must be enabled by software. This is done by an 8-bit register called Interrupt Enable 

Register (IE). 

Interrupt Enable Register : 

 

 EA   : Global enable/disable. To enable the interrupts, this bit must be set high. 

 ---        : Undefined-reserved for future use. 

 ET2 : Enable /disable  Timer 2  overflow interrupt. 

 ES   : Enable/disable Serial port interrupts. 

 ET1 : Enable /disable Timer 1  overflow interrupt. 

 EX1 : Enable/disable  External  interrupt1. 

 ET0 :  Enable /disable  Timer 0 overflow  interrupt.  

 EX0 : Enable/disable  External  interrupt0 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

16 

 Upon reset, the interrupts have the following priority from top to down.  The interrupt with the highest 

PRIORITY gets serviced first. 

1. External interrupt 0 (INT0) 

2. Timer interrupt0 (TF0) 

3. External interrupt 1 (INT1) 

4. Timer interrupt1 (TF1) 

5. Serial communication (RI+TI) 

 Priority can also be set to “high” or “low” by 8-bit IP register. 

Interrupt priority register: 

 

 IP.7: reserved 

 IP.6: reserved 

 IP.5: Timer 2 interrupt priority bit (8052 only) 

 IP.4: Serial port interrupt priority bit 

 IP.3: Timer 1 interrupt priority bit 

 IP.2: External interrupt 1 priority bit 

 IP.1: Timer 0 interrupt priority bit 

 IP.0: External interrupt 0 priority bit 

*************************************************************************************** 

4.7: TIMERS in  8051 Microcontrollers: 

Explain in detail the timer of 8051 and their associated registers. (NOV 2009, MAY2009) 

How are the timers of 8051 used to produce time delay in timer mode? (NOV 2011) 

 The 8051 microcontroller has two 16-bit timers Timer 0 (T0) and Timer 1(T1), which can be used either 

to generate accurate time delays or as event counters.  



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

17 

 These timers are accessed as two 8-bit registers TLO, THO & TL1, TH1 because the 8051 

microcontroller is 8-bit architecture. 

TIMER 0 :  

 The Timer 0 is a 16-bit register and can be treated as two 8-bit registers (TL0 & TH0). 

 These registers can be accessed similar to other registers like A, B or R1, R2, R3 etc… 

 Ex : The instruction MOV TL0,#07; Moves the value 07 into lower byte of Timer0. 

 

TIMER 1 :  

 The Timer 1 is also a 16-bit register and can be treated as two 8-bit registers (TL1 & TH1). 

 These registers can be accessed similar to any other registers like A, B or R1, R2, R3 etc… 

 Ex : The instruction MOV TL1,#05: Moves the value 05 into lower byte of Timer1. 

 
TMOD Register:  

 The various operating modes of both the timers T0 and T1 are set by an 8-bit register called TMOD 

register.  

 In this TMOD register the lower 4-bits are meant for Timer 0 and the higher 4-bits are meant for 

Timer1. 

 
GATE:  

 This bit is used to start or stop the timers by hardware. 

 When GATE= 1, the timers can be started / stopped by the external sources.  



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

18 

 When GATE= 0, the timers can be started or stopped by software instructions like SETB TR0 or SETB 

TR1. 

/ TC  (Clock/Timer) :  

 This bit decides whether the timer is used as delay generator or event counter.  

 When / TC  = 0, the timer is used as delay generator and if / TC =1 the timer is used as an event 

counter.  

 The clock source for the time delay is the crystal frequency of 8051. 

M1, M0 (Mode):  

 These two bits are the timer mode bits.  

 The timers of the 8051 can be configured in three modes as Mode0, Mode1 and Mode2. 

 The selection and operation of the modes is shown below. 

S.No    M0   M1       Mode Operation 

1 0 0 0 13-bit Timer mode. 

8-bit Timer/counter THx with TLx as 5-bit 

prescaler  

2 0 1 1 16-bit Timer mode.16-bit timer /counter 

THx and TLx are cascaded. There is no 

presacler 

3 1 0 2 8-bit auto reload. 
 8-bit auto reload timer/counter. THx holds a 

value which is to be reloaded TLx each time 

it overflows 

4 1 1 3 13-bit Timer mode. 

8-bit Timer/counter THx with TLx as 5-bit 

prescaler  

TCON (Timer control register) 

 TCON (timer control) register is an 8-bit register. TCON register is a bit-addressable register. 

  

 

 

 

 TF1: Timer 1 overflow flag. 

 TR1: Timer 1 run control bit. 

 TF0: Timer 0 overflow flag. 

 TR0: Timer 0 run control bit. 

 IE1: External interrupt 1 edge flag. 

 IT1: External interrupt 1 type flag. 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

19 

 IE0: External interrupt 0 edge flag. 

 IT0: External interrupt 0 type flag.   

*************************************************************************************** 

4.8: PIN Diagram of 8051 Microcontroller: 

Explain Pin details of 8051 microcontroller. (MAY 2006) 

Describe the functions of the following signals in 8051. RST,  EA,  PSEN and ALE. (NOV 2015) 

 The 8051 microcontroller is available as a 40 pin DIP chip and it works at +5 volts DC.  

 Among the 40 pins, a total of 32 pins are allotted for the four parallel ports P0, P1, P2 and P3 i.e each 

port occupies 8-pins. 

 The remaining pins are VCC, GND, XTAL1, XTAL2, RST, EA ,PSEN.  

XTAL1, XTAL2:  

 These two pins are connected to Quartz crystal oscillator which runs the on-chip oscillator.  

 The quartz crystal oscillator is connected to the two pins along with a capacitor of 30pF as shown in the 

circuit.  

 If use a source other than the crystal oscillator, it will be connected to XTAL1 and XTAL2 is left 

unconnected.  

 

RST:  

 The RESET pin is an input pin and it is an active high pin.  

 When a high pulse is applied to this pin, the microcontroller will reset and terminate all activities.  

 Upon reset all the registers will reset to 0000 Value and SP register will reset to 0007 value. 

 (External Access):  

 This pin is an active low pin.  



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

20 

 This pin is connected to ground when microcontroller is accessing the program code stored in the 

external memory. 

 This pin is connected to Vcc when it is accessing the program code in the on chip memory.  

(Program Store Enable):  

 This is an output pin which is active low.  

 When the microcontroller is accessing the program code stored in the external ROM, this pin is 

connected to the OE (Output Enable) pin of the ROM. 

ALE (Address latch enable):  

 This is an output pin, which is active high.  

 This ALE pin will demultiplex the address and data bus. 

 When the pin is high, the Address/ Data bus will act as address bus, otherwise the Address/ Data bus 

will act as Data bus. 

 

Figure: Pin diagram of 8051 

 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

21 

P0.0- P0.7(AD0-AD7) :  

 The port 0 pins multiplexed with Address/data pins. 

 If the microcontroller is accessing external memory, these pins will act as address/data pins, otherwise 

they are used for Port 0 pins. 

P2.0- P2.7 (A8-A15) :  

 The port2 pins are multiplexed with the higher order address pins. 

 When the microcontroller is accessing external memory, these pins provide the higher order address 

byte, otherwise they act as Port 2 pins. 

P1.0- P1.7 : 

 These 8-pins are dedicated to perform input or output port operations. 

P3.0- P3.7: 

 These 8-pins are meant for Port3 operations and also for some control operations like read, Write, 

Timer0, Timer1, INT0, INT1, RxD and TxD. 

************************************************************************************** 

4.9: ADDRESSING MODES OF 8051 : 

Explain different types addressing modes of 8051 microcontroller. (NOV 2008, NOV 2015, April 2017) 

 The way in which the data operands are specified is known as  the addressing modes. There are various 

methods of denoting the data operands in the instruction.  

 The 8051 microcontroller supports 5 addressing modes. They are  

1. Immediate addressing mode 

2. Direct Addressing mode 

3. Register addressing mode 

4. Register indirect addressing mode 

5. Indexed addressing mode 

Immediate addressing mode:  

 The addressing mode in which the data operand is a constant and it is a part of the instruction itself is 

known as Immediate addressing mode.  

 Normally the data must be preceded by a # sign.  

 This addressing mode can be used to transfer the data into any of the registers including DPTR. 

Examples:  

 MOV A, # 27 H     : The data (constant) 27 is moved to the accumulator register 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

22 

 ADD R1, #45 H   : Add the constant 45 to the contents of the accumulator 

 MOV DPTR, # 8245H : Move the data  8245 into the data pointer register. 

Direct addressing mode:  

 In the addressing mode, the data operand is in the RAM location (00 -7FH) and the address of the 

data operand is given in the instruction.  

 The direct addressing mode uses the lower 128 bytes of Internal RAM and the SFRs 

Examples: 

 MOV R1, 42H    : Move the contents of RAM location 42 into R1 register 

 MOV 49H, A   : Move the contents of the accumulator into the RAM location 49. 

 ADD A, 56H   : Add the contents of the RAM location 56 to the accumulator 

Register addressing mode: 

 In the addressing mode, the data operands are available in the registers. 

Examples: 

 MOV A,R0   : Move the contents of the register R0 to the accumulator 

 MOV P1, R2   :Move the contents of the R2 register into port 1 

 MOV R5, R2    : This is invalid. The data transfer between the registers is not allowed. 

Register Indirect addressing mode: 

 In the addressing mode, a register is used as a pointer to the data memory block. 

Examples: 

 MOV A,@ R0 :Move the contents of  RAM location whose address is in R0 into A (accumulator) 

 MOV @ R1 , B : Move the contents of B into RAM location whose address is held by R1 

 When R0 and R1 are used as pointers, they must be preceded by @ sign 

 Advantage: It makes accessing the data more dynamic than static as in the case of direct 

addressing mode. 

Indexed addressing mode:  

 This addressing mode is used in accessing the data elements of lookup table entries, located in program 

ROM. 

Example: MOVC A, @ A+DPTR 

 The 16-bit register DPTR and register A are used to form the address of the data element stored in  on-

chip  ROM.  

*********************************************************************************** 

 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

23 

4.10: Instructions Set of 8051: 

Discuss in detail the 8051 instruction set. (NOV 2008) 

4.10.1:Arithmetic instructions: 

With example, explain arithmetic instructions in 8051 microcontroller. (NOV 2012) 

 ADD 

• 8-bit addition between the accumulator (A) and a second operand. 

• The result is always in the accumulator. 

• The CY flag is set/reset appropriately. 

 ADDC 

• 8-bit addition between the accumulator, a second operand and the previous value of the 

CY flag. 

• Useful for 16-bit addition in two steps. 

• The CY flag is set/reset appropriately. 

 DAA 

• Decimal adjust the accumulator. 

• Format the accumulator into a proper 2 digit packed BCD number. 

• Operates only on the accumulator. 

• Works only after the ADD instruction. 

 SUBB 

• Subtract with Borrow. 

• Subtract an operand and the previous value of a borrow (carry) flag from the 

accumulator. 

• A  A - <operand> - CY.  

• The result is always saved in the accumulator. 

• The CY flag is set/reset appropriately. 

 INC 

• Increment the operand by one. 

• The operand can be a register, a direct address, an indirect address, the data pointer. 

 DEC 

• Decrement the operand by one. 

• The operand can be a register, a direct address, an indirect address. 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

24 

 MUL AB / DIV AB 

• Multiply A by B and place result in A and B registers. 

• Divide A by B and place quotient in A register & remainder in B register. 

 4.10.2: Logical instructions in 8051. 

 ANL : It performs AND logical operation between two operands. 

 Work on byte sized operands or the CY flag. 

• ANL A, Rn  

• ANL A, direct 

• ANL A, @Ri  

• ANL A, #data 

• ANL direct, A 

• ANL direct, #data 

• ANL C, bit 

• ANL C, /bit 

 ORL: It performs OR logical operation between two operands. 

 Work on byte sized operands or the CY flag. 

• ORL A, Rn  

• ORL A, direct 

• ORL A, @Ri  

• ORL A, #data 

 XRL 

 Works on bytes only. 

• XRL A, Rn  

• XRL A, direct 

 CPL / CLR 

 Complement / Clear. 

 Work on the accumulator or a bit. 

• CLR P1.2 

• CPL Rn 

 RL / RLC / RR / RRC 

 Rotate the accumulator. 

• RL and RR without the carry 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

25 

• RLC and RRC rotate through the carry. 

• SWAP A: Swap the upper and lower nibbles of the accumulator. 

 

4.10.3: Data transfer instructions in 8051. 

Briefly explain the data transfer instructions available in 8051 microcontroller. (NOV 2014) 

 MOV 

 8-bit data transfer for internal RAM and the SFR. 

• MOV A, Rn  

• MOV A, direct 

• MOV A, @Ri  

• MOV A, #data 

• MOV Rn, A 

• MOV Rn, direct 

• MOV Rn, #data 

• MOV direct, A 

• MOV direct, Rn  

• MOV direct, direct 

• MOV direct, @Ri  

• MOV direct, #data 

• MOV @Ri, A 

• MOV @Ri, direct 

• MOV @Ri, #data 

 MOV 

 1-bit data transfer involving the CY flag 

• MOV C, bit 

• MOV bit, C 

 MOV 

 16-bit data transfer involving the DPTR 

• MOV DPTR, #data 

 MOVC 

 Move Code Byte 

• Load the accumulator with a byte from program memory. 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

26 

• Must use indexed addressing 

• MOVC A, @A+DPTR 

• MOVC A, @A+PC 

 MOVX 

 Data transfer between the accumulator and a byte from external data memory. 

• MOVX A, @Ri  

• MOVX A, @DPTR 

• MOVX @Ri, A 

• MOVX @DPTR, A 

 PUSH / POP 

 Push and Pop a data byte onto the stack. 

 The data byte is identified by a direct address from the internal RAM locations. 

• PUSH DPL 

• POP 40H 

 XCH 

 Exchange accumulator and a byte operand 

• XCH A, Rn  

• XCH A, direct 

• XCH A, @Ri  

 XCHD 

 Exchange lower digit of accumulator with the lower digit of the memory location specified. 

• XCHD A, @Ri  

• The lower 4-bits of the accumulator are exchanged with the lower 4-bits of the internal 

memory location identified indirectly by the index register. 

• The upper 4-bits of each are not modified. 

 

4.10.4:  Boolean (or) Bit manipulation instructions in 8051. 

 This group of instructions is associated with the single-bit operations of the 8051. 

 This group allows manipulating the individual bits of bit addressable registers and memory locations as 

well as the CY flag. 

• The P, OV, and AC flags cannot be directly altered. 

 This group includes: 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

27 

• Set, clear, and, or complement, move. 

• Conditional jumps. 

 CLR 

• Clear a bit or the CY flag. 

• CLR P1.1 

• CLR C 

 SETB 

• Set a bit or the CY flag. 

• SETB A.2 

• SETB C 

 CPL 

• Complement a bit or the CY flag. 

• CPL 40H; Complement bit 40 of the bit addressable memory 

 ORL / ANL 

• OR / AND a bit with the CY flag. 

• ORL C, 20H; OR bit 20 of bit addressable memory with the CY flag 

• ANL C, 34H; AND bit 34 of bit addressable memory with the CY flag. 

 MOV 

• Data transfer between a bit and the CY flag. 

• MOV C, 3FH; Copy the CY flag to bit 3F of the bit addressable memory. 

• MOV P1.2, C; Copy the CY flag to bit 2 of P1. 

 JC / JNC 

• Jump to a relative address if CY is set / cleared. 

 JB / JNB 

• Jump to a relative address if a bit is set / cleared. 

• JB ACC.2, <label> 

 JBC - Jump to a relative address, if a bit is set and clear the bit. 

4.10.5: Branching instructions: 

With example, explain branching instructions in 8051 microcontroller. (May 2010, NOV 2012) 

Explain the working of program control transfer instructions of 8051. (May 2012) 

 The 8051 provides four different types of unconditional jump instructions: 

 Short Jump – SJMP 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

28 

• Uses an 8-bit signed offset relative to the 1st byte of the next instruction. 

• Long Jump – LJMP 

• Uses a 16-bit address. 

• 3 byte instruction capable of referencing any location in the entire 64K of program 

memory. 

 Absolute Jump – AJMP 

• Uses an 11-bit address. 

• 2 byte instruction 

• The 11-bit address is substituted for the lower 11-bits of the PC to calculate the 16-bit 

address of the target. 

• The location referenced must be within the 2K Byte memory. 

 Indirect Jump – JMP 

• JMP @A + DPTR  

 The 8051 provides 2 forms for the CALL instruction: 

 Absolute Call – ACALL 

• Uses an 11-bit address similar to AJMP 

• The subroutine must be within the same 2K page. 

 Long Call – LCALL 

• Uses a 16-bit address similar to LJMP 

• The subroutine can be anywhere. 

 Both forms push the 16-bit address of the next instruction on the stack and update the stack 

pointer. 

 The 8051 provides 2 forms for the return instruction: 

 Return from subroutine – RET 

• Pop the return address from the stack and continue execution there. 

 Return from Interrupt Service Routine – RETI 

• Pop the return address from the stack. 

• Continue execution at the address retrieved from the stack. 

• The PSW is not automatically restored. 

 The 8051 supports 5 different conditional jump instructions. 

 ALL conditional jump instructions use an 8-bit signed offset. 

 Jump on Zero – JZ / JNZ 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

29 

• Jump if the A == 0 / A != 0 

• The check is done at the time of the instruction execution. 

 Jump on Carry – JC / JNC 

• Jump if the C flag is set / cleared. 

 Jump on Bit – JB / JNB 

• Jump if the specified bit is set / cleared. 

• Any addressable bit can be specified. 

 Jump if the Bit is set then Clear the bit – JBC 

• Jump if the specified bit is set. 

• Then clear the bit. 

 Compare and Jump if Not Equal – CJNE 

 Compare the magnitude of the two operands and jump if they are not equal. 

• The values are considered to be unsigned. 

• The Carry flag is set / cleared appropriately. 

• CJNE  A, direct, rel  

• CJNE  Rn, #data, rel  

• CJNE  @Ri, #data, rel  

 Decrement and Jump if Not Zero – DJNZ 

 Decrement the first operand by 1 and jump to the location identified by the second operand if the 

resulting value is not zero. 

• DJNZ  Rn, rel  

• DJNZ  direct, rel  

 NOP – No operation 

********************************************************************************* 

Program 1: Using timers in 8051 write a program to generate square wave 100ms, 50% duty 

cycle. (NOV 2014, May 2016, May 2012) 

MOV TMOD, #01 

Here: MOV TL0, #D7 

MOV TH0, #B4 

CPL P1.3 

SETB TRO 

                    Again: JNB TF0, Again 

CLR TR0 

CLR TF0 

SJMP Here 

 



EC 8691 – Microprocessor and Microcontroller  Unit-4 

 

 

30 

Program 2: Write an 8051 ALP to multiply the given number 48H and 30H. (April 2017) 

Mnemonics Comments 

Opcode Operand  

MOV 

MOV 

MUL 

MOV 

MOVX 

INC 

MOV 

MOVX 

L1: SJMP 

A,#48 

B,#30 

AB 

DPTR,#4500 

@DPTR,A 

DPTR 

A,B 

@DPTR,A 

L1 

;Store data1 in accumulator 

;Store data2 in B register  

;Multiply both 

;Initialize memory location 

;Store lower order result   

;Go to next memory location 

;Store higher order result  

 

;Stop the program 

 

 

Program 3: Write a program to add two 16 bit numbers. The numbers are 8C8D and 8D8C. 

Place the sum in R7 and R6. R6 should have the lower byte. (NOV 2010) 

Mnemonics Comments 

Opcode Operand  

MOV 

MOV 

ADD 

MOV 

MOV 

MOV 

ADD 

MOV 

L1: SJMP 

A, #8D 

B, #8C 

A, B 

R6, A 

A, #8C 

B, #8D 

A, B 

R7, A 

L1 

;Store LSB data1 in accumulator 

;Store LSB data2 in B register  

;Add both 

;Store LSB result 

;Store MSB data1 in accumulator 

;Store MSB data2 in B register  

;Add both 

;Store MSB result 

;Stop the program 

 

 

 

 
 



EC 8691                                                              1                                                           Microprocessor and Microcontroller 

 

 

UNIT V 

INTERFACING MICROCONTROLLER 

Programming 8051 Timers - Serial Port Programming - Interrupts Programming – LCD & Keyboard 

Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper Motor and 

Waveform generation.  

 

5.1: PROGRAMMING TIMERS OF 8051 

1. Explain the different modes of operation of timers in 8051 in detail with its associated 

registers.  

Describe different modes of operation of timers /counters in 8051 with its associated 

registers. (NOV 2009, MAY 2009. May 2007, May 2016) 

 Draw and explain the functions of TCON and TMOD registers of 8051. (Dec 2008) 

 Explain the on-chip timer modes of an 8051 Microcontroller. (April 2010, NOV 2016)  

   

Timer Registers. 

 The 8051 has two timers/counters, they can be used either as timers (used to generate a time delay) 

 or as event counters. 

TIMER 0:  

 Timer 0 is a 16-bit register and can be treated as two 8-bit registers (TL0 & TH0).  

 These registers can be accessed similar to any other registers like A, B or R1 etc 

 Ex : The instruction MOV TL0,#07 moves the value 07 into lower byte of Timer0. 

 Similarly MOV R1, TH0 saves the contents of TH0 in the R1 register. 

 

TIMER 1:  

 Timer 1 is also a 16-bit register and can be treated as two 8-bit registers (TL1 & TH1).  

 These registers can be accessed similar to any other registers like A, B or R1etc 

 Ex : The instruction MOV TL1,#05 moves the value 05 into lower byte of Timer1. 

 Similarly MOV  R0,TH1 saves the contents of TH1  in the R0 register. 

 



EC 8691                                                              2                                                           Microprocessor and Microcontroller 

 

 

 

 TMOD (Timer mode Register): 

 The various operating modes of both the timers T0 and T1 are set by a TMOD register. 

 TMOD is a 8-bit register. 

 The lower 4 bits are for Timer 0 

 The upper 4 bits are for Timer 1 

 In each case, 

 The lower 2 bits are used to set the timer mode 

 The upper 2 bits to specify the operation 

 

GATE:  

 This bit is used to start or stop the timers by hardware. 

 When GATE= 1, the timers can be started / stopped by the external sources.  

 When GATE= 0, the timers can be started or stopped by software instructions like SETB TRX  

or CLR TRX. 

C/T (Counter/Timer):  

 This bit decides whether the timer is used as delay generator or event counter.  

 When / TC   = 0, timer is used as delay generator.  

 When / TC  =1, timer is used as an event counter.  

 The clock source for the time delay is the crystal frequency of 8051. 

 The clock source for the event counter is the external clock source. 

M1, M0 (Mode):  

 These two bits are the timer mode bits.  

 The timers of the 8051 can be configured in four modes Mode0, Mode1, Mode2 & Mode 3.  

 The selection and operation of the modes is shown below. 

 



EC 8691                                                              3                                                           Microprocessor and Microcontroller 

 

 

S.No M0 M1       Mode Operation 

1 0 0 Mode 0 13-bit Timer mode. 

8-bit Timer/counter THx with TLx as 5-bit 

prescaler  

2 0 1 Mode 1 16-bit Timer mode.16-bit timer /counter 

THx and TLx are cascaded. There is no 

presacler 

3 1 0 Mode 2 8-bit auto reload. 

 8-bit auto reload timer/counter. THx holds a 

value which is to be reloaded TLx each time 

it overflows 

4 1 1 Mode 3 Split timer mode 

 

Mode 0: 13 bit Timer mode 

 

 

Mode 1: 16 bit Timer mode 

 

 

Mode 2:  8 bit auto reload mode 

 



EC 8691                                                              4                                                           Microprocessor and Microcontroller 

 

 

Mode 3: Split Timer mode 

 

Figure: Modes of operation of Timer 

TCON (Timer control register) 

 TCON (timer control) register is an 8-bit register. TCON register is a bit-addressable register. 

 

Bit 

Number 

Bit 

Mnemonic 

Description 

7 TF1 Timer 1 overflow flag 

Cleared by hardware when processor vectors to interrupt routine. 

Set by hardware on timer/counter overflow, when the timer 1 register overflows. 

6 TR1 Timer 1 run control bit 

Clear to turn off time/counter 1. 

Set to turn on timer/counter 1. 

5 TF0 Timer 0 overflow flag 

Cleared by hardware when processor vectors to interrupt routine. 

Set by hardware on timer/counter overflow, when the timer 0 register overflows. 

4 TR0 Timer 0 run control bit 

Clear to turn off time/counter 0. 

Set to turn on timer/counter 0. 

3 IE1 External interrupt 1 edge flag. 

Cleared by hardware when interrupt is processed if edge-triggered. 

Set by hardware when external interrupt is detected on INT1 pin. 

2 IT1 External interrupt 1 type control bit 

Clear to select low level active (level triggered) for external interrupt 1. 

Set to select falling edge active (edge triggered) for external interrupt 1. 

1 IE0 External interrupt 0 edge flag 

Cleared by hardware when interrupt is processed if edge-triggered. 

Set by hardware when external interrupt is detected on INT0 pin. 

0 IT0 External interrupt 0 type control bit 

Clear to select low level active (level triggered) for external interrupt 0. 

Set to select falling edge active (edge triggered) for external interrupt 0. 

 



EC 8691                                                              5                                                           Microprocessor and Microcontroller 

 

 

Timers of 8051 do starting and stopping by either software or hardware control 

 For using software to start and stop the timer where GATE=0 

 The start and stop of the timer are controlled by software using TR (timer start) bits TRX and 

CLRX 

 The SETB instruction starts it, and it is stopped by the CLR instruction. 

 These instructions start and stop the timers as long as GATE=0 in the TMOD register 

 The hardware way of starting and stopping the timer is achieved by making GATE=1 in the  

TMOD register. 

The following are the characteristics and operations of mode 1: 

1. It is a 16-bit timer. 

2. It allows value from 0000 to FFFFH.  

3. Value to be loaded into the timer register TL and TH. 

4. After TH and TL are loaded with a 16-bit initial value, the timer must be started 

 This is done by SETB TR0 for timer 0 and SETB TR1 for timer 1 

5. After the timer is started, it starts to count up 

 It counts up until it reaches its limit of FFFFH 

 When it rolls over from FFFFH to 0000, it sets high a flag bit called TF (timer flag) 

  Each timer has its own timer flag. 

 There are TF0 for timer 0, and TF1 for timer 1. 

 

 

          6. Timer flag can be monitored, 

 When this timer flag is raised, to stop the timer with the CLR instructions.  

 CLR TR0 and CLR TR1, for timer 0 and timer 1 respectively. 

  After the timer reaches its limit and rolls over.  

  In order to repeat the process, TH and TL must be reloaded with the original value and TF 

must be reloaded to 0. 

 

 



EC 8691                                                              6                                                           Microprocessor and Microcontroller 

 

 

To generate a time delay 

1. Load the TMOD register indicating which timer is to be used and which timer mode is selected. 

2. Load registers TL and TH with initial count value. 

3. Start the timer 

4. Keep monitoring the timer flag (TF) with the JNB TFx , target to see if it is raised 

 Get out of the loop when TF becomes high 

5. Stop the timer 

6. Clear the TF flag for the next round 

7. Go back to Step 2 to load TH and TL again. 

Example 1: 

In the following program, we create a square wave of 50% duty cycle (with equal portions high 

and low) on the P1.5 bit. Timer 0 is used to generate the time delay. Analyze the program. (Nov 2014) 

MOV TMOD,#01 ;Timer 0, mode 1(16-bit mode) 

HERE:  MOV TL0,#0F2H  ;TL0=F2H, the low byte 

MOV TH0,#0FFH  ;TH0=FFH, the high byte 

CPL P1.5   ;toggle P1.5 

ACALL DELAY 

SJMP HERE 

DELAY: SETB TR0   ;start the timer 0 

AGAIN:  JNB TF0,AGAIN  ;monitor timer flag 0 until it rolls over 

CLR TR0   ;stop timer 0 

CLR TF0   ;clear timer 0 flag 

RET 

In the above program notice the following steps. 

1. TMOD is loaded. 

2. FFF2H is loaded into TH0-TL0. 

3. P1.5 is toggled for the high and low portions of the pulse. 

4. The DELAY subroutine using the timer is called. 

5. In the DELAY subroutine, timer 0 is started by the SETB TR0 instruction. 

6. Timer 0 counts up with the passing of each clock, which is provided by the crystal oscillator. 

 As the timer counts up, it goes through the states of FFF3, FFF4, FFF5, FFF6, and so on until it 

reaches FFFFH.  

 One more clock rolls it to 0, raising the timer flag (TF0=1). At that point, the JNB instruction falls 

through. 

7. Timer 0 is stopped by the instruction CLR TR0.  

 The DELAY subroutine ends and the process is repeated. 



EC 8691                                                              7                                                           Microprocessor and Microcontroller 

 

 

Notice that to repeat the process, we must reload the TL and TH registers, and start the process is 

repeated. 

 

Example 2: 

In Example 1, calculate the amount of time delay in the DELAY subroutine generated by the 

timer. Assume XTAL = 11.0592 MHz. 

Solution: 

 The timer works with a clock frequency of 1/12 of the XTAL frequency, we have 11.0592 MHz / 

12 = 921.6 kHz as the timer frequency. 

 As a result, each clock has a period of T =1/921.6kHz,T=1.085µs. 

 In other words, Timer 0 counts up each 1.085µs resulting in delay = number of counts × 1.085µs. 

 The number of counts for the roll over is FFFFH – FFF2H = 0DH (13 decimal). 

 Add one to 13 because of the extra clock needed when it rolls over from FFFF to 0 and raise the 

TF flag.  

 This gives 14 × 1.085µs = 15.19µs for half the pulse. For the entire period it is T = 2 × 15.19µs = 

30.38µs as the time delay generated by the timer. 

(a) In hexadecimal 

(FFFF – YYXX + 1) ×1.085 µs, where YYXX are TH, TL initial values respectively. Notice that value 

YYXX are in hex. 

(b) In decimal 

Convert YYXX values of the TH, TL register to decimal to get a NNNN decimal, then (65536 - NNNN) × 

1.085 µs 

 

Example 3: 

In Example 1, calculate the frequency of the square wave generated on pin P1.5. 

Solution: 

 In the timer delay calculation of Example 1, we did not include the overhead due to instruction in 

the loop.  

 To get a more accurate timing, we need to add clock cycles due to these instructions in the loop.  

 To do that, we use the machine cycle as shown below. 

 



EC 8691                                                              8                                                           Microprocessor and Microcontroller 

 

 

Cycles 

HERE:  MOV TL0,#0F2H   2 

MOV TH0,#0FFH   2 

CPL P1.5    1 

ACALL DELAY   2 

SJMP HERE    2 

DELAY: SETB TR0    1 

AGAIN:  JNB TF0, AGAIN   14 

CLR TR0    1 

CLR TF0    1 

RET     2 

Total   28 

T = 2 × 28 × 1.085 us = 60.76 µs and F = 16458.2 Hz 

Example 4: 

Find the delay generated by timer 0 in the following code, using both of the Methods. Do not 

include the overhead due to instruction. 

CLR P2.3   ;Clear P2.3 

MOV TMOD,#01  ;Timer 0, 16-bitmode 

HERE:  MOV TL0,#3EH  ;TL0=3Eh, the low byte 

MOV TH0,#0B8H  ;TH0=B8H, the high byte 

SETB P2.3   ;SET high timer 0 

SETB TR0   ;Start the timer 0 

AGAIN:  JNB TF0,AGAIN  ;Monitor timer flag 0 

CLR TR0   ;Stop the timer 0 

CLR TF0   ;Clear TF0 for next round 

CLR P2.3 

Solution: 

(FFFFH – B83E + 1) = 47C2H = 18370 in decimal and 18370 × 1.085 µs = 19.93145 ms 

 

The following are the characteristics and operations of mode 2: 

1. It is an 8-bit timer.  It allows only values of 00 to FFH to be loaded into the timer register TH. 

2. After TH is loaded with the 8-bit value, the 8051 copies value to TL register. 

 Then the timer must be started. 

 This is done by the instruction SETB TR0 for timer 0 and SETB TR1 for timer 1. 

3. After the timer is started, it starts to count up by incrementing the TL register. 

 It counts up until it reaches its limit of FFH 

 When it rolls over from FFH to 00, it sets high the TF (timer flag) 

 When the TL register rolls from FFH to 00 and TF is set to 1. 



EC 8691                                                              9                                                           Microprocessor and Microcontroller 

 

 

 TL is reloaded automatically with the original value kept by the TH register. 

 To repeat the process, simply clear TF. 

4. This makes mode 2 an auto-reload, in contrast with mode 1 in which the programmer has to reload      

    TH and TL 

 

To generate a time delay 

1. Load the TMOD value register indicating which timer is to be used, and the timer mode (mode 2) is 

selected. 

2. Load the TH register with the initial count value. 

3. Start timer. 

4. Keep monitoring the timer flag (TF) with the JNB TFx, target,  to see whether it is raised 

    Get out of the loop when TF goes high 

5. Clear the TF flag. 

6. Go back to Step4, since mode 2 is auto reload. 

 

Example 5: 

Assume XTAL = 11.0592 MHz, find the frequency of the square wave generated on pin P1.0. 

 

MOV TMOD,#20H  ;T1/8-bit/auto reload 

MOV TH1,#5   ;TH1 = 5 

SETB TR1   ;start the timer 1 

BACK:  JNB TF1,BACK  ;till timer rolls over 

CPL P1.0   ;P1.0 to hi, lo 

CLR TF1   ;clear Timer 1 flag 

SJMP BACK   ;mode 2 is auto-reload 

Solution: 

 In mode 2, no need to reload TH since it is auto-reload.  

 Now (256 - 05) × 1.085 µs =251 × 1.085 µs = 272.33 µs is the high portion of the pulse.  

 Since it is a 50% duty cycle square wave, the period T is twice. 

 As a result T = 2 × 272.33 µs = 544.67 µs and the frequency = 1.83597 kHz 



EC 8691                                                              10                                                           Microprocessor and Microcontroller 

 

 

5.2: Timers as counters 

Timers can also be used as counters.  

Which are used for counting events happening outside the 8051. 

 When it is used as a counter, it is a pulse outside of the 8051 that increments the TH, TL register. 

 TMOD and TH, TL registers are the same as in timer concept, except the source of the frequency. 

  The C/T bit in the TMOD register decides the source of the clock for the timer 

 When C/T = 1, the timer is used as a counter and gets its pulses from outside the 8051. 

 The counter counts up as pulses are fed from pins 14 and 15. 

  these pins are called T0 (timer 0 input) and T1 (timer 1 input) 

 

 If GATE = 1, the start and stop of the timer are done externally through pins P3.2 and P3.3 for 

timers 0 and 1, respectively 

 This hardware allows starting or stopping the timer externally at any time via a simple switch  

 

 



EC 8691                                                              11                                                           Microprocessor and Microcontroller 

 

 

 

 The frequency for the timer is always 1/12th the frequency of the crystal attached to the 8051. 

 

 

 

Example 6: 

Assuming that clock pulses are fed into pin T1, write a program for counter 1 in mode 2 to count the 

pulses and display the state of the TL1 count on P2, which connects to 8 LEDs. 

Solution: 

MOV TM0D,#01100000B  ;counter 1, mode 2, C/T=1 external pulses 

MOV TH1,#0    ;clear TH1 

SETB P3.5    ;make T1 input 

AGAIN:  SETB TR1    ;start the counter 

BACK:  MOV A,TL1    ;get copy of TL 

MOV P2,A           ;display it on port 2 

JNB TF1,Back   ;keep doing, if TF = 0 

CLR TR1      ;stop the counter 1 

CLR TF1    ;make TF=0 

SJMP AGAIN   ;keep doing it 

 Notice in the above program the role of the instruction SETB P3.5. 

 Since ports are set up for output when the 8051 is powered up. 

 So, we make P3.5 an input port by making it high.  

 In other words, we must configure (set high) the T1 pin (pin P3.5) to allow pulses to be fed into it. 



EC 8691                                                              12                                                           Microprocessor and Microcontroller 

 

 

5.3: SERIAL COMMUNICATION 

 

2. Explain the serial programming of 8051 with its associated registers. (May 2014, 2013)(Or) 

    Explain how to program for sending and receiving data serially using 8051 (April 2010, 2011) 

    Explain 8051 serial port programming with examples. (May 2016, NOV 2012) 

    Explain the serial modes of operation of 8051 microcontroller. (May 2007) 

 

RS232 

 It is an interfacing standard RS232. 

 It was set by the Electronics Industries Association (EIA) in 1960.  

 The standard was set long before the advent of the TTL logic family. 

 Its input and output voltage levels are not TTL compatible. 

 In RS232, a 0 is represented by -3 to -25 V, while a 1 bit is +3 to +25 V. 

 IBM introduced the DB-9 version of the serial I/O standard. 

 

Handshake signals of MODEM 

DTR (data terminal ready) 

 When DTR =1, indicate that it is ready for communication. 

 DSR (data set ready) 

 When DSR =1, indicate that it is ready for communication. 

 RTS (request to send) 

 It asserts RTS to signal the modem that it has a byte of data to transmit. 

 CTS (clear to send) 

 It is to receive, it sends out signal CTS, 



EC 8691                                                              13                                                           Microprocessor and Microcontroller 

 

 

DCD (data carrier detect) 

 The modem asserts signal DCD to inform the DTE that a valid carrier has been detected. 

 RI (ring indicator) 

 An output from the modem and an input to a PC indicates that the telephone is ringing. 

 

MAX232 

A line driver ( MAX232) is required to convert RS232 voltage levels to TTL levels, and vice versa. 

 8051 has two pins that are used specifically for transferring and receiving data serially. 

 These two pins are called TxD and RxD and are part of the port 3 (P3.0 and P3.1). 

 These pins are TTL compatible. 

 They require a line driver to make them RS232 compatible. 

 

Baud rate: 

 The baud rates in 8051 are programmable. 

 8051 divides the crystal frequency by 12 to get machine cycle frequency. 

 8051 UART circuitry divides the machine cycle frequency by 32. 

 

 Timer 1 is used to set baud rate using TH1 register 

 Baud rate TH1 (decimal) TH1(Hex) 

9600     -3 FD 

4800 -6 FA 

2400 -12 F4 

1200 -24 E8 



EC 8691                                                              14                                                           Microprocessor and Microcontroller 

 

 

Explain in detail the serial communication registers of the 8051. (NOV 2009) 

SBUF: 

 It is an 8-bit register used for serial communication. 

 For a byte data to be transferred via the TxD line: 

 Byte must be placed in the SBUF register. 

 Bytes are framed with the start and stop bits and transferred serially via the TxD line. 

 SBUF holds the byte of data when it is received by 8051 RxD line. 

 When the bits are received serially via RxD. 

 8051 de-frames byte by eliminating the stop and start bits. 

 

SCON: 

 It is an 8-bit register used to program the start bit, stop bit and data bits of data framing. 

SM0 SM1 SM2 REN TB8 RB8 TI RI 

 

Bit 

Number 

Bit 

Mnemonic 

Description 

SCON.7 SM0 Serial port mode specifier  

SCON.6 SM1 Serial port mode specifier 

SCON.5 SM2 Used for multiprocessor communication 

SCON.4 REN Set/Cleared by software to enable/disable reception 

SCON.3 TB8 Not widely used 

SCON.2 RB8 Not widely used 

SCON.1 TI Transmit interrupt flag. Set by hardware at the begin of the stop bit mode 1.  

And cleared by software 

SCON.0 RI Receive interrupt flag. Set by hardware at the begin of the stop bit mode 1.  

And cleared by software 

 

SM0, SM1: Serial port mode specifiers 

SM0  SM1 

  0    0 Serial Mode 0 

  0    1 Serial Mode 1; 8-bit data, 1 stop bit, 1 start bit 

  1    0 Serial Mode 2 

  1    1 Serial Mode 3 

 

 



EC 8691                                                              15                                                           Microprocessor and Microcontroller 

 

 

In programming the 8051 to transfer character bytes serially  

 

1. TMOD register is loaded with the value 20H, indicating the use of timer 1 in mode 2 (8-bit auto-    

     reload) to set baud rate. 

2. The TH1 is loaded with one of the values to set baud rate for serial data transfer. 

3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8-bit data is framed    

    with start and stop bits. 

4. TR1 is set to 1 to start timer 1 

5. TI is cleared by CLR TI instruction. 

6. The character byte to be transferred serially is written into SBUF register. 

7. The TI flag bit is monitored with the use of instruction JNB TI, xx,  to see if the character has been    

     transferred completely. 

8. To transfer the next byte, go to step 5. 

Write a program for the 8051 to transfer letter “A” serially at 4800 baud, continuously. 

Solution: 

MOV  TMOD, #20H ;timer 1, mode 2 (auto reload) 

  MOV  TH1, #-6 ;4800 baud rate 

  MOV  SCON, #50H ;8-bit, 1 stop, REN enabled 

  SETB  TR1  ;start timer 1 

AGAIN: MOV  SBUF, #”A” ;letter “A” to trtansfer 

HERE:  JNB TI, HERE ;wait for the last bit 

  CLR  TI  ;clear TI for next char 

  SJMP AGAIN  ;keep sending A 

 

The steps that 8051 goes through in transmitting a character via TxD 

1. The byte character to be transmitted is written into the SBUF register 

2. The start bit is transferred 

3. The 8-bit character is transferred on bit at a time 

4. The stop bit is transferred 

 It is during the transfer of the stop bit that 8051 raises the TI flag, indicating that the last 

   character was transmitted 

5. By monitoring the TI flag, we make sure that we are not overloading the SBUF 



EC 8691                                                              16                                                           Microprocessor and Microcontroller 

 

 

 If we write another byte into the SBUF before TI is raised, the un-transmitted portion of the 

     previous byte will be lost. 

6. After SBUF is loaded with a new byte, the TI flag bit must be forced to 0 by CLR TI in order for this      

    new byte to be transferred 

 

By checking the TI flag bit, we know whether or not the 8051 is ready to transfer another byte 

 It must be noted that TI flag bit is raised by 8051 itself when it finishes data transfer 

 It must be cleared by the programmer with instruction CLR TI 

 If we write a byte into SBUF before the TI flag bit is raised, we risk the loss of a portion of the 

byte being transferred 

 The TI bit can be checked by the instruction JNB TI,xx Using an interrupt. 

 

Write a program for the 8051 to transfer “YES” serially at 9600 baud, 8-bit data, 1 stop bit do this 

continuously. (May 2006) 

 

Solution: 

  MOV  TMOD, #20H ;timer 1, mode 2 (auto reload) 

  MOV  TH1, #-3 ;9600 baud rate 

  MOV  SCON, #50H ;8-bit, 1 stop, REN enabled 

  SETB  TR1  ;start timer 1 

AGAIN: MOV  A, # “Y” ;transfer “Y” 

  ACALL TRANS 

  MOV  A, # “E” ;transfer “E” 

  ACALL TRANS 

  MOV  A, # “S” ;transfer “S” 

  ACALL TRANS 

  SJMP  AGAIN ;keep doing it 

;serial data transfer subroutine 

TRANS: MOV  SBUF, A ;load SBUF 

HERE:  JNB  TI, HERE ;wait for the last bit 

  CLR  TI  ;get ready for next byte 

  RET  

 

 



EC 8691                                                              17                                                           Microprocessor and Microcontroller 

 

 

In programming the 8051 to receive character bytes serially 

1. TMOD register is loaded with the value 20H, indicating the use of timer 1 in mode 

    (8-bit auto-reload) to set baud rate 

2. TH1 is loaded to set baud rate 

3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8-bit data is framed    

    with start and stop bits 

4. TR1 is set to 1 to start timer 1 

5. RI is cleared by CLR RI instruction 

6. The RI flag bit is monitored with the use of instruction JNB RI, xx to see if an entire character has      

    been received yet 

7. When RI is raised, SBUF has the byte, its contents are moved into a safe place. 

8. To receive the next character, go to step 5. 

 

Write a program for the 8051 to receive bytes of data serially and put them in P1, set the baud rate at 

4800, 8-bit data and 1 stop bit. (NOV 2016) 

Solution: 

  MOV  TMOD, #20H ;timer 1, mode 2 (auto reload) 

  MOV  TH1, #-6 ;4800 baud rate 

  MOV  SCON, #50H ;8-bit, 1 stop, REN enabled 

  SETB  TR1  ;start timer 1 

HERE:  JNB  RI, HERE ;wait for char to come in 

  MOV  A, SBUF ;saving incoming byte in A 

  MOV  P1, A  ;send to port 1 

  CLR  RI  ;get ready to receive next byte 

  SJMP HERE  ;keep getting data 

 

In receiving bit via its RxD pin, 8051 goes through the following steps. 

1. It receives the start bit 

 Indicating that the next bit is the first bit of the character byte it is about to receive 

2. The 8-bit character is received one bit at time 

3. The stop bit is received 

 When receiving the stop bit 8051 makes RI = 1,indicating that an entire character byte has 

    been received. 

 



EC 8691                                                              18                                                           Microprocessor and Microcontroller 

 

 

5. After the SBUF contents are copied into a safe place.  

 The RI flag bit must be forced to 0 by CLR RI in order to allow the next received character byte to 

be placed in SBUF. 

 Failure to do this causes loss of the received character. 

 

There are two ways to increase the baud rate of data transfer 

 To use a higher frequency crystal 

 To change a bit in the PCON register 

PCON 

 PCON register is an 8-bit register 

 When 8051 is powered up, SMOD is zero.  

 We can set it to high by software and thereby double the baud rate. 

 GF1, GF0: General flag bits 

 PD: Power down mode 

 IDL: Ideal mode 

 

 

******************************************************************* 

 

 

 

 



EC 8691                                                              19                                                           Microprocessor and Microcontroller 

 

 

5.4: LCD Interfacing 

 

3. Explain how LCD is used to interface with 8051. (May 2007) 

  How does one interface a 16 × 2 LCD Display using 8051 Microcontroller? (May2009, May 2010) 

 

Introduction:  

• Liquid Crystal displays are created by sandwiching a thin 10-12μm layer of a liquid-crystal  

fluid between two glass plates.  

• A transparent, electrically conductive film or backplane is put on the rear glass sheet.  

• Transparent sections of conductive film in the shape of the desired characters are coated on the  

front glass plate. 

• When a voltage is applied between a segment and the backplane, an electric field is created  

in the region under the segment.  

• This electric field changes the transmission of light through the region under the segment film. 

• Most LCD’s require a voltage of 2 or 3 V between the backplane and a segment to turn on  

the segment.  

 

There are two types available of LCD  

• Dynamic scattering and field effect. 

Dynamic scattering types of LCD:  

 It scrambles the molecules where the field is present.  

 This produces an etched-glass-looking light character on a dark background. 

Field-effect types: 

 Use polarization to absorb light where the electric field is present.  

 This produces dark characters on a silver- gray background. 

 Advantages of LCD 

o LCD is finding widespread use replacing LEDs 

o The declining prices of LCD 

o The ability to display numbers, characters, and graphics 

o Ease of programming for characters and Graphics 

 

 

 



EC 8691                                                              20                                                           Microprocessor and Microcontroller 

 

 

 

 

Fig:Pin details of LCD module 

Interfacing LCD module 

 

Fig: Interfacing LCD module with controller 

 



EC 8691                                                              21                                                           Microprocessor and Microcontroller 

 

 

LCD Command Codes 

 

• To send any of the commands to the LCD, make pin RS=0. For data, make RS=1. 

• Then send a high-to-low  pulse to the E pin to enable the internal latch of the LCD.  

• This is shown in the code below. 

     ;calls a time delay before sending next data/command 

;P1.0-P1.7 are connected to LCD data pins D0-D7 

;P2.0 is connected to RS pin of LCD 

;P2.1 is connected to R/W pin of LCD 

;P2.2 is connected to E pin of LCD 

ORG 0H 

MOV A,#38H ;INIT. LCD 2 LINES, 5X7 MATRIX 

ACALL COMNWRT ;call command subroutine 

ACALL DELAY ;give LCD some time 

MOV A,#0EH ;display on, cursor on 

ACALL COMNWRT ;call command subroutine 

ACALL DELAY ;give LCD some time 

MOV A,#01 ;clear LCD 



EC 8691                                                              22                                                           Microprocessor and Microcontroller 

 

 

ACALL COMNWRT ;call command subroutine 

ACALL DELAY ;give LCD some time 

MOV A,#06H ;shift cursor right 

ACALL COMNWRT ;call command subroutine 

ACALL DELAY ;give LCD some time 

MOV A,#84H ;cursor at line 1, pos. 4 

ACALL COMNWRT ;call command subroutine 

ACALL DELAY ;give LCD some time 

MOV A,#’N’ ;display letter N 

ACALL DATAWRT ;call display subroutine 

ACALL DELAY ;give LCD some time 

MOV A,#’O’ ;display letter O 

ACALL DATAWRT ;call display subroutine 

AGAIN: SJMP AGAIN ;stay here 

COMNWRT: ;send command to LCD 

MOV P1,A ;copy reg A to port 1 

CLR P2.0 ;RS=0 for command 

CLR P2.1 ;R/W=0 for write 

SETB P2.2 ;E=1 for high pulse 

ACALL DELAY ;give LCD some time 

CLR P2.2 ;E=0 for H-to-L pulse 

RET 

DATAWRT: ;write data to LCD 

MOV P1,A ;copy reg A to port 1 

SETB P2.0 ;RS=1 for data 

CLR P2.1 ;R/W=0 for write 

SETB P2.2 ;E=1 for high pulse 

ACALL DELAY ;give LCD some time 

CLR P2.2 ;E=0 for H-to-L pulse 

RET 

DELAY: MOV R3,#50 ;50 or higher for fast CPUs 

HERE2: MOV R4,#255 ;R4 = 255 

HERE: DJNZ R4,HERE ;stay until R4 becomes 0 

DJNZ R3,HERE2 

RET 

END 



EC 8691                                                              23                                                           Microprocessor and Microcontroller 

 

 

;Check busy flag before sending data, command to LCD 

;p1=data pin 

;P2.0 connected to RS pin 

;P2.1 connected to R/W pin 

;P2.2 connected to E pin 

 

ORG 0H 

MOV A,#38H ;init. LCD 2 lines ,5x7 matrix 

ACALL COMMAND ;issue command 

MOV A,#0EH ;LCD on, cursor on 

ACALL COMMAND ;issue command 

MOV A,#01H ;clear LCD command 

ACALL COMMAND ;issue command 

MOV A,#06H ;shift cursor right 

ACALL COMMAND ;issue command 

MOV A,#86H ;cursor: line 1, pos. 6 

ACALL COMMAND ;command subroutine 

MOV A,#’N’ ;display letter N 

ACALL DATA_DISPLAY 

MOV A,#’O’ ;display letter O 

ACALL DATA_DISPLAY 

HERE:SJMP HERE ;STAY HERE 

********************************************************************************* 

5.5:  KEYBOARD INTERFACING 

4. With neat circuit diagram explain how a 4 x 4 keypad is interfaced with 8051 microcontroller and 

write 8051 ALP for keypad scanning. (May 2013, Nov 2015, NOV 2007) 

 Keyboards are organized in a matrix of rows and columns 

 The CPU accesses both rows and columns through ports.  

 Therefore, with two 8-bit ports, an 8 x 8 matrix of keys can be connected to a microprocessor. 

 When a key is pressed, a row and a column make a contact.  

 Otherwise, there is no connection between rows and columns. 

 A 4x4 matrix is connected to two ports. 

 The rows are connected to an output port and the columns are connected to an input port  



EC 8691                                                              24                                                           Microprocessor and Microcontroller 

 

 

 

Fig: Model of 4x4 matrix KEYBOARD 

 

 It is the function of the microcontroller to scan the keyboard continuously to detect and identify the 

key pressed 

To detect a pressed key: 

 The microcontroller grounds all rows by providing 0, then it reads the columns 

 Data read from columns is D3 – D0 = 1111. No key has been pressed and the process continues till 

key press is detected 

 If one of the column bits has a zero, a key press has occurred.  

 For example, if D3 – D0 = 1101, a key in the D1 column has been pressed. 

 After detecting a key press, microcontroller will go through the process of identifying the key. 

 Starting with the top row, the microcontroller grounds it by providing a low to row D0 only 

 It reads the columns, if the data read is all 1s, no key in that row is activated. 

 The process is moved to the next row 

 It grounds the next row, reads the columns, and checks for any zero 

 This process continues until the row is identified. 

 After identification of the row in which the key has been pressed 

 Find out which column the pressed key belongs to corresponding key is displayed. 

 

 



EC 8691                                                              25                                                           Microprocessor and Microcontroller 

 

 

 

 

Flowchart: Scan the keyboard to detect and identify the key. 



EC 8691                                                              26                                                           Microprocessor and Microcontroller 

 

 

5.6: Interfacing 8051 to ADC  

5. Explain how to interface an 8-bit ADC with 8051 Microcontroller.(April 2010, May 2008, Nov 2014) 

 ADCs (analog-to-digital converters) are widely used devices for data acquisition. A physical 

quantity (temperature, pressure, humidity, and velocity, etc.,) is converted to electrical (voltage, current) 

signals using a device called a transducer, or sensor. 

 We need an analog-to-digital converter to translate the analog signals to digital numbers, so 

microcontroller can read them. 

ADC804 IC is an analog-to-digital converter 

 It works with +5 volts and has a resolution of 8 bits. 

 Conversion time is defined as the time it takes the ADC to convert the analog input to a 

digital(binary) number. 

 In ADC804 conversion time varies depending on the clocking signals applied to CLK R and CLK 

IN pins, but it cannot be faster than 110 μs. 

 

CLK IN and CLK R 

 CLK IN is an input pin connected to an external clock source 

 To use the internal clock generator (also called self-clocking), CLK IN and CLK R pins are 

connected to a capacitor and a resistor, and the clock frequency is determined by 

                                       f = 1/1.1 RC 

 Typical values are R = 10K ohms and C = 150 Pf. We get f = 606 kHz and the conversion time is 

110 μs 

D0-D7 

 The digital data output pins 

 These are tri-state buffered 

 The converted data is accessed only when CS = 0 and RD is forced low 

 To calculate the output voltage, use the following formula 

 

Dout = digital data output (in decimal), 

Vin = analog voltage and step size (resolution) is the smallest change 

 



EC 8691                                                              27                                                           Microprocessor and Microcontroller 

 

 

Vref/2 

 It is used for the reference voltage 

 If this pin is open (not connected), the analog input voltage is in the range of 0 to 5 volts (the same 

as the Vcc pin) 

 If the analog input range needs to be 0 to 4 volts, Vref/2 is connected to 2 volts. 

Analog ground and digital ground 

 Analog ground is connected to the ground of the analog Vin 

 Digital ground is connected to the ground of the Vcc pin 

 To isolate the analog Vin signal from transient voltages caused by digital switching of the output 

D0 – D7. This contributes to the accuracy of the digital data output. 

The following steps must be followed for data conversion by the ADC804 chip 

 Make CS = 0 and send a low-to-high pulse to pin WR to start conversion 

 Keep monitoring the INTR pin 

 If INTR is low, the conversion is finished 

 If the INTR is high, keep polling until it goes low 

 After the INTR has become low, we make CS = 0 and send a high-to-low pulse to the RD pin to 

get the data out of the ADC804. 

 

 



EC 8691                                                              28                                                           Microprocessor and Microcontroller 

 

 

Examine the ADC804 connection to the 8051 in Figure. Write a program to monitor the INTR pin 

and bring an analog input into register A. Then call a hex-to ACSII conversion and data display 

subroutines. Do this continuously. (NOV 2007) 

;p2.6=WR (start conversion needs to L-to-H pulse) 

;p2.7 When low, end-of-conversion) 

;p2.5=RD (a H-to-L will read the data from ADC chip) 

;p1.0 – P1.7= D0 - D7 of the ADC804 

MOV P1,#0FFH   ;make P1 = input 

BACK:  CLR P2.6    ;WR = 0 

SETB P2.6    ;WR = 1 L-to-H to start conversion 

HERE:  JB P2.7,HERE    ;wait for end of conversion 

CLR P2.5    ;conversion finished, enable RD 

MOV A,P1    ;read the data 

ACALL CONVERSION  ;hex-to-ASCII conversion 

ACALL DATA_DISPLAY ;display the data 

SETB p2.5    ;make RD=1 for next round 

SJMP BACK 

5.7: DAC Interfacing with 8051 

 

6. Explain the DAC interface with 8051. (May 2008) 

    Develop 8051 based system having 8Kbyte RAM to generate the triangular wave using DAC. 

(April 2017) 

Microcontroller is used in wide variety of applications like for measuring and control of physical 

quantity like temperature, pressure, speed, distance, etc. 

 Microcontroller generates output which is in digital form.  

 But the controlling system requires analog signal, so use DAC which converts digital data into 

equivalent analog voltage. 

In the figure shown, we use 8-bit DAC 0808. This IC converts digital data into equivalent analog 

Current. 

 Hence we require an I to V converter to convert this current into equivalent voltage. 

 

 



EC 8691                                                              29                                                           Microprocessor and Microcontroller 

 

 

 

According to theory of DAC Equivalent analog output is given as: 

Ex: 

1. IF data =00H [00000000], Vref= 10v 

 

Therefore, V0= 0 Volts. 

2. If data is 80H [10000000], Vref= 10VTherefore, V0= 5 Volts. 

 
 

Different Analog output voltages for different Digital signals are given as: 

 

Data Output Voltage 

00H 0V 

80H 5V 

FFH 10V 



EC 8691                                                              30                                                           Microprocessor and Microcontroller 

 

 

Program to generate square wave: 

Label  Mnemonics Comments 

 Opcode Operand  

LOOP2 : 

 

 

 

 

 

 

Delay: 

LOOP3: 

MOV 

MOV 

ACALL 

MOV 

MOV 

ACALL 

SJMP 

MOV 

DJNZ  

RET 

A,# 00 

P1, AL 

Delay 

A,#FF 

P1, AL 

Delay 

LOOP2 

RO, #F0 

RO, LOOP3 

; Set Logic 0 level 

 

;Generate timing delay 

;Set logic 1 level 

 

; Generate timing delay 

:Repeat to generates Square Wave 

:Delay Program 

 

Program to generate Triangular wave: 

 

Label  Mnemonics Comments 

 Opcode Operand  

LOOP3 : 

LOOP1: 

 

 

 

 

LOOP2: 

MOV 

MOV 

MOV 

INC 

JNZ 

MOV 

MOV 

MOV 

DJNZ 

SJMP 

B,# 00 

A, B 

P1, A 

B 

 LOOP1 

B, #FF 

A, B 

P1, A 

B, LOOP2 

LOOP3 

;Set logic 0 

;copy logic 0 

 

; Increment  

; If ZF=0, jump to next 

Set logic 1 

;copy logic 1 

 

; Decrement &jump to next 

;Repeat 

 

 

 

 

 



EC 8691                                                              31                                                           Microprocessor and Microcontroller 

 

 

5.8: Temperature Sensors 

7. Explain the interfacing of temperature sensor with 8051 

 A thermistor responds to temperature change by changing resistance, but its response is not linear.  

Temperature (C) Tf (K ohms) 

0 29.49 

25 10 

50 3.893 

75 1.7 

100 0.817 

 

Signal conditioning is a widely used term in the world of data acquisition 

 It is the conversion of the signals (voltage, current, charge, capacitance, and resistance) produced 

by transducers to voltage, which is sent to the input of an A to-D converter. 

Signal conditioning can be a current-to voltage conversion or a signal amplification 

 The thermistor changes resistance with temperature, while the change of resistance must be 

translated into voltage in order to be of any use to an ADC. 

 The sensors of the LM34/LM35 series are precision integrated-circuit temperature sensors whose       

            output voltage is linearly proportional to the Fahrenheit/Celsius temperature. 

 The LM34/LM35 requires no external calibration since it is inherently calibrated. 

 It outputs 10 mV for each degree of Fahrenheit/Celsius temperature. 

 The LM336 is used to overcome any power fluctuation in the power supply.  

 



EC 8691                                                              32                                                           Microprocessor and Microcontroller 

 

 

 

 

 

5.9: Interfacing to external memory 

 

8. Describe the external memory and its interfacing with 8051. (NOV 2009, May 2008) 

    Write short notes on memory addressing. (Nov /Dec 2007) 

    How a program memory and a data memory are interfaced with 8051. (NOV 2007) 

 

5.9.1: Connection to External Program ROM: 

Explain how to interface ROM with the 8051. (NOV 2009) 

We use RD to connect the 8051 to external ROM containing data. 

 For the ROM containing the program code, PSEN is used to fetch the code. 

 64K bytes are set aside for program code 

 Program space is accessed using the program counter (PC) to locate and fetch instructions 

 In some example we placed data in the code space and use the instruction MOVC A,@A+DPTR 

            to get data, where C stands for code 



EC 8691                                                              33                                                           Microprocessor and Microcontroller 

 

 

 The other 64K bytes are set aside for data.  

 The data memory space is accessed using the DPTR register and an instruction called MOVX , 

where X stands for external – The data memory space must be implemented externally. 

 

 

 

 

 

 

 

 

 

 

 

 

 In the 8031/51, port 0 and port 2 provide the 16-bit address to access external memory. 

 P0 provides the lower 8 bit address A0 – A7, and P2 provides the upper 8 bit address A8 – A15 

 P0 is also used to provide the 8-bit data bus D0 – D7. 

 P0.0 – P0.7 are used for both the address and data paths using address/data multiplexing. 

EA (External access) 

 Connect the EA pin to Vcc to indicate that the program code is stored in the  microcontroller’s  

            on-chip ROM . 

 To indicate that the program code is stored in external ROM, this pin must be connected to GND. 

 ALE (address latch enable) pin is an output pin for 8051 

 ALE = 0, P0 is used for data path. 

 ALE = 1, P0 is used for address path. 

 To extract the address from the P0 pins we connect P0 to a 74LS373 and use the ALE pin to 

       latch the address. 

PSEN (program store enable) signal is an output signal for the 8051 microcontroller and must be 

connected to the OE pin of a ROM containing the program code. 

 

 

 



EC 8691                                                              34                                                           Microprocessor and Microcontroller 

 

 

5.9.2: Connection to External Data RAM 

Interfacing external RAM with 8051 

Write a brief note on external data move operations in 8051. (May 2016) 

MOVX is a widely used instruction allowing access to external data memory space 

 To bring externally stored data into the CPU, we use the instruction MOVX A,@DPTR 

 To connect the 8051 to an external SRAM, we must use both RD (P3.7) and WR (P3.6) 

 In writing data to external data RAM, we use the instruction MOVX @DPTR,A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In the 8031/51, port 0 and port 2 provide the 16-bit address to access external memory. 

 P0 provides the lower 8 bit address A0 – A7, and P2 provides the upper 8 bit address A8 – A15 

 P0 is also used to provide the 8-bit data bus D0 – D7. 

 P0.0 – P0.7 are used for both the address and data paths using address/data multiplexing. 

 Data space is accessed using the program counter (PC) to locate, read  and write data. 

ALE (address latch enable) pin is an output pin for 8051 

 ALE = 0, P0 is used for data path. 

 ALE = 1, P0 is used for address path. 

 To extract the address from the P0 pins we connect P0 to a 74LS373 and use the ALE pin to 

       latch the address. 

 EA & PSEN are not connected 

***************************************************************************** 



EC 8691                                                              35                                                           Microprocessor and Microcontroller 

 

 

5.10: Interfacing stepper motor with 8051 

 

9. Demonstrate the interfacing of the stepper motor with 8051 and explain its interfacing diagram 

and develop to rotate the motor in clock wise direction  (April 2017, NOV 2016, May 2016, May 

2010,  May 2009, May 2008, May 2007, Nov 2015, 2014, 2013, 2011, 2010 & May 2013) 

Describe in detail the microcontroller based system design with an example. (NOV 2102) 

 

STEPPER MOTOR  

 A stepper motor is a brushless, synchronous electric motor that converts digital pulses into 

mechanical shaft rotation.  

 Every revolution of the stepper motor is divided into a discrete number of steps, and the motor 

must be sent a separate pulse for each step. 

Applications:  

Stepper motors can be used for position control in disk drive, dot matrix printers, robotics etc. 

Construction: 

 The stepper motor has four stator windings that are paired with a centre tapped common.  

 This type of a stepper motor is commonly referred to as a four phase unipolar stepper motor. 

 The center tap allows a change of current direction in each of two coils when a winding is 

grounded, there by resulting in a polarity change of the stator. 

 

 It has total of 6 leads: 4 leads representing the four stator windings and 2 commons for the center 

tapped leads. 

 The stepper motor shaft moves in a fixed repeatable increment, which allows one to move it to a 

accurate position. 

 As the direction of the current is changed, the polarity is also changed causing the reverse motion 

of the rotor. 

 As the sequence of power is applied to each stator winding, the rotor will rotate. 



EC 8691                                                              36                                                           Microprocessor and Microcontroller 

 

 

 We can start with any of the sequences, once started, and must continue in the proper order. 

 Step angle of the stepper motor is defined as the minimum degree of rotation associated with a 

single step.  

 To calculate step angle, simply divide 360 by number of steps a motor takes to complete one 

revolution. 

 Motor rotating in full mode takes 4 steps to complete a revolution ,so step angle can be calculated 

as step angle ø = 360° / 4 =90. 

 By knowing the stepper motor step angle helps to move the motor in correct angular position. 

8051 Microcontroller connection to Stepper motor: 

 The stepper motor is connected with Microcontroller output port pins through a ULN2003 driver.  

 The Microcontroller’s pin can provide a maximum of 1-2mA current.  

 Place a driver, such as the ULN 2003/ULN2803or a power transistor between the Microcontroller 

and the coil to energize the stator. 

 

(Connection diagram between 8051 and Stepper motor) 

 So when the microcontroller is giving pulses with particular frequency, the motor is rotated in 

clockwise or anticlockwise. 

   Program to interface Stepper motor with 8051: 

 The following steps show the 8051 connection to the stepper motor and its programming. 

1. The common wires are connected to the positive side of the motor’s power supply (+5V is 

sufficient).  



EC 8691                                                              37                                                           Microprocessor and Microcontroller 

 

 

2. Four stator windings are controlled by four bits of the 8051 port (P1.0 to P1.3). Driver 

ULN2003 used to energize the stator. 

Pin assignment with 8051: 

 

        By giving the excitation as indicated above through port 1 we can rotate stepper motor in clockwise 

or anti clock wise direction. 

Assembly Language Program: 

To rotate motor in the clock wise direction (Forward direction): 

  MOV A,#66H   ; Copy step value to Accumulator 

BACK: MOV P1,A   ; Copy step value from Accumulator to Port 1 

  RR A    ; Rotate right to get consecutive step values  

  ACALL DELAY  ; Call delay program 

  SJMP BACK   ; repeat for next sequence. 

DELAY: MOV R2,#F0 

DELAY2: MOV R3,#FF 

DELAY1: DJNZ R3,# DELAY1 

  DJNZ R2,# DELAY2 

RET    ; Return to main program 

 

To rotate motor in the counter (Anti) clock wise direction (Reverse direction): 

  MOV A,#66H   ; Copy step value to Accumulator 

BACK: MOV P1,A   ; Copy step value from Accumulator to Port 1 

  RL A    ; Rotate left to get consecutive step values  

  ACALL DELAY  ; Call delay program 

  SJMP BACK   ; repeat for next sequence. 

DELAY: MOV R2,#F0 

DELAY2: MOV R3,#FF 

DELAY1: DJNZ R3,# DELAY1 

  DJNZ R2,# DELAY2 

RET    ; Return to main program 



EC 8691                                                              38                                                           Microprocessor and Microcontroller 

 

 

To rotate motor in both forward and reverse direction: 

MOV A,#66H   ; Copy step value to Accumulator 

FORWARD: MOV P1,A   ; Copy step value from Accumulator to Port 1 

  RR A    ; Rotate right to get consecutive step values  

  ACALL DELAY  ; Call delay program 

  MOV R0,#04 

  DJNZ R0,FORWARD 

 

REVERSE:  MOV P1,A   ; Copy step value from Accumulator to Port 1 

  RL A    ; Rotate left to get consecutive step values  

  ACALL DELAY  ; Call delay program 

  MOV R0,#04 

  DJNZ R0,REVERSE 

SJMP FORWARD  ; repeat for next sequence. 

 

DELAY: MOV R2,#F0   :Delay program 

DELAY2: MOV R3,#FF 

DELAY1: DJNZ R3,# DELAY1 

  DJNZ R2,# DELAY2 

RET    ; Return to main program 

 

The PIC microcontroller was developed by General Instruments in 1975. PIC was developed when 

Microelectronics Division of General Instruments was testing its 16-bit CPU CP1600.  

Although the CP1600 was a good CPU but it had low I/O performance. The PIC controller was used to 

offload the I/O the tasks from CPU to improve the overall performance of the system. 

  

In 1985, General Instruments converted their Microelectronics Division to Microchip Technology.  

PIC stands for Peripheral Interface Controller. The General Instruments used the acronyms Programmable 

Interface Controller and Programmable Intelligent Computer for the initial PICs (PIC1640 and PIC1650).  

  

In 1993, Microchip Technology launched the 8-bit PIC16C84 with EEPROM which could be 

programmed using serial programming method.  

The improved version of PIC16C84 with flash memory (PIC18F84 and PIC18F84A) hit the market in 

1998.  

Development: 

Since 1998, Microchip Technology continuously developed new high performance microcontrollers with 

new complex architecture and enhanced in-built peripherals. PIC microcontroller is based on Harvard 

architecture. At present PIC microcontrollers are widely used for industrial purpose due to its high 

performance ability at low power consumption. It is also very famous among hobbyists due to moderate 



EC 8691                                                              39                                                           Microprocessor and Microcontroller 

 

cost and easy availability of its supporting software and hardware tools like compilers, simulators, 

debuggers etc. The 8-bit PIC microcontroller is divided into following four categories on the basis of 

internal architecture: 

  

1. Base Line PIC 

2. Mid-Range PIC 

3. Enhanced Mid-Range PIC 

4. PIC18 

  

1. Base Line PIC 

Base Line PICs are the least complex PIC microcontrollers. These microcontrollers work on 12-bit 

instruction architecture which means that the word size of instruction sets are of 12 bits for these 

controllers. These are smallest and cheapest PICs, available with 6 to 40 pin packaging.  The small size 

and low cost of Base Line PIC replaced the traditional ICs like 555, logic gates etc. in industries. 

 

2. Mid-Range PIC 

Mid-Range PICs are based on 14-bit instruction architecture and are able to work up to 20 MHz speed. 

These controllers are available with 8 to 64 pin packaging. These microcontrollers are available with 

different peripherals like ADC, PWM, Op-Amps and different communication protocols like USART, 

SPI, I2C (TWI), etc. which make them widely usable microcontrollers not only for industry but for 

hobbyists as well. 

  

3. Enhanced Mid-Range PIC 

These controllers are enhanced version of Mid-Range core. This range of controllers provides additional 

performance, greater flash memory and high speed at very low power consumption. This range of PIC 

also includes multiple peripherals and supports protocols like USART, SPI, I2C and so on. 

 

 

  

4. PIC18 

PIC18 range is based on 16-bit instruction architecture incorporating advanced RISC architecture which 

makes it highest performer among the all 8-bit PIC families. The PIC18 range is integrated with new age 

communication protocols like USB, CAN, LIN, Ethernet (TCP/IP protocol) to communicate with local 

and/or internet based networks. This range also supports the connectivity of Human Interface Devices like 

touch panels etc. 

MIPS stand for Millions of Instructions per Second  

  

Besides 8-bit microcontrollers, Microchip also manufactures 16-bit and 32-bit microcontrollers. Recently 

Microchip developed XLP (Extreme Low Power) series microcontrollers which are based on NanoWatt 

technology. These controllers draw current in order of nanoamperes(nA).  

PIC microcontrollers are also available with extended voltage ranges which reduce the frequency range. 

The operating voltage range of these PICs is 2.0-6.0 volts. The letter ‘L’ is included in controller’s name 

to denote extended voltage range controllers. For example, PIC16LFxxx (Operating voltage 2.0-6.0 volts). 

  

The following section covers the PIC architecture in further detail. PIC18 series has been selected for the 

study because it is enhanced series of 8-bit PIC microcontroller. In this series, PIC18F4550 has been 

chosen to describe the architecture and other features due its moderate complexity. 

 

 

http://www.engineersgarage.com/articles/what-is-compiler-tutorial


EC 8691                                                              40                                                           Microprocessor and Microcontroller 

 

 

Architecture: 

PIC microcontrollers are based on advanced RISC architecture. RISC stands for Reduced Instruction Set 

Computing. In this architecture, the instruction set of hardware gets reduced which increases the execution 

rate (speed) of system.  

  

PIC microcontrollers follow Harvard architecture for internal data transfer. In Harvard architecture there 

are two separate memories for program and data. These two memories are accessed through different 

buses for data communication between memories and CPU core. This architecture improves the speed of 

system over Von Neumann architecture in which program and data are fetched from the same memory 

using the same bus. PIC18 series controllers are based on 16-bit instruction set.  

  

The question may arise that if PIC18 are called 8-bit microcontrollers, then what about them being based 

on 16-bit instructions set. ‘PIC18 is an 8-bit microcontroller’ this statement means that the CPU core can 

receive/transmit or process a maximum of 8-bit data at a time. On the other hand the statement ‘PIC18 

microcontrollers are based on 16-bit instruction set’ means that the assembly instruction sets are of 16-bit.  

The data memory is interfaced with 8-bit bus and program memory is interfaced with 16-bit bus as 

depicted in the following figure 

 

 

 
 

 

 

Fig. 4: Simple Block Diagram Of CPU Interfacing With Data And Program Memory In PIC 

 

PIC18 Harvard Architecture  

PIC microcontroller contains an 8-bit ALU (Arithmetic Logic Unit) and an 8-bit Working Register 

(Accumulator). There are different GPRs (General Purpose Registers) and SFRs (Special Function 

Registers) in a PIC microcontroller. The overall system performs 8-bit arithmetic and logic functions. 

These functions usually need one or two operands. One of the operands is stored in WREG (Accumulator) 

and the other one is stored in GPR/SFR. The two data is processed by ALU and stored in WREG or other 

registers. 



EC 8691                                                              41                                                           Microprocessor and Microcontroller 

 

  

 

Fig. 5: Simple Block Diagram of Data Processing in PIC18 Harvard  

  

The above process occurs in a single machine cycle. In PIC microcontroller, a single machine cycle 

consists of 4 oscillation periods. Thus an instruction needs 4 clock periods to be executed. This makes it 

faster than other 8051 microcontrollers.  

  

Pipelining: 

Early processors and controllers could fetch or execute a single instruction in a unit of time. The PIC 

microcontrollers are able to fetch and execute the instructions in the same unit of time thus increasing their 

instruction throughput. This technique is known as instruction pipelining where the processing of 

instructions is split into a number of independent steps.  

 

  

Fig. 6: Diagram Showing Instruction Pipelining Technique In PIC 

Features and Peripherals 

The PIC18F consists of the following features and peripherals. 

  

Features: 

·         C Compiler Optimized Architecture with Optional Extended Instruction Set 

·         100,000 Erase/Write Cycle Enhanced Flash  

·         Program Memory Typical 

·         1,000,000 Erase/Write Cycle Data EEPROM Memory Typical 

·         Flexible oscillator option 

Four Crystal modes, including High-Precision PLL for USB 

http://www.engineersgarage.com/8051-microcontroller


EC 8691                                                              42                                                           Microprocessor and Microcontroller 

 

 

 

o     Two External Clock modes, Up to 48 MHz 

o     Internal Oscillator: 8 user-selectable frequencies, from 31 kHz to 8 MHz 

o    Dual Oscillator Options allow Microcontroller and USB module to Run at different Clock Speeds 

  

Peripherals: 

The PIC18F4550 microcontroller consists of following peripherals: 

  

·         I/O Ports: PIC18F4550 have 5 (PORTA, PORTB, PORTC, PORTD and PORTE) 8-bit input-output 

ports. PortB & PortD have 8 I/O pins each. Although other three ports are 8-bit ports but they do not have 

eight I/O pins. Although the 8-bit input and output are given to these ports, but the pins which do not exist, 

are masked internally.  

  

Memory: PIC18F4550 consists of three different memory sections:  

1.      Flash Memory: Flash memory is used to store the program downloaded by a user on to the 

microcontroller. Flash memory is non-volatile, i.e., it retains the program even after the power is cut-off. 

PIC18F4550 has 32KB of Flash Memory. 

  

2.      EEPROM: This is also a nonvolatile memory which is used to store data like values of certain 

variables. PIC18F4550 has 256 Bytes of EEPROM. 

  

3.      SRAM: Static Random Access Memory is the volatile memory of the microcontroller, i.e., it loses its 

data as soon as the power is cut off. PIC18F4550 is equipped with 2 KB of internal SRAM.  

·         Oscillator: The PIC18F series has flexible clock options. An external clock of up to 48 MHz can be 

applied to this series. These controllers also consist of an internal oscillator which provides eight 

selectable frequency options varying from 31 KHz to 8 MHz. 

 ·         8x8 Multiplier: The PIC18F4550 includes an 8 x 8 multiplier hardware. This hardware performs 

the multiplications in single machine cycle. This gives higher computational throughput and reduces 

operation cycle & code length. 

·         ADC Interface: PIC18F4550 is equipped with 13 ADC (Analog to Digital Converter) channels of 

10-bits resolution. ADC reads the analog input, for example, a sensor input and converts it into digital 

value that can be understood by the microcontroller. 

  

·         Timers/Counters: PIC18F4550 has four timer/counters. There is one 8-bit timer and the remaining 

timers have option to select 8 or 16 bit mode. Timers are useful for generating precision actions, for 

example, creating precise time delays between two operations. 

  

·         Interrupts: PIC18F4550 consists of three external interrupts sources. There are 20 internal interrupts 

which are associated with different peripherals like USART, ADC, Timers, and so on. 

  

·    EUSART: Enhanced USART (Universal Synchronous and Asynchronous Serial Receiver and 

Transmitter) module is full-duplex asynchronous system. It can also be configured as half-duplex 

synchronous system. The Enhanced USART has the feature for automatic baud rate detection and 

calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These 

features make it ideally suited for use in Local Interconnect Network bus (LIN bus) systems. 

 

 

 

http://www.engineersgarage.com/electronic-components/pic18f4550-microcontroller
http://www.engineersgarage.com/microcontroller
http://www.engineersgarage.com/embedded/pic-microcontroller-projects/adc-circuit
http://www.engineersgarage.com/embedded/pic-microcontroller-projects/timer-circuit
http://www.engineersgarage.com/embedded/pic-microcontroller-projects/pic-external-hardware-interrupts-circuit
http://www.engineersgarage.com/embedded/pic-microcontroller-projects/eusart-circuit


EC 8691                                                              43                                                           Microprocessor and Microcontroller 

 

 

  

·         ICSP and ICD: PIC18F series controllers have In Circuit Serial Programming facility to program 

the Flash Memory which can be programmed without removing the IC from the circuit. ICD (In Circuit 

Debugger) allows for hardware debugging of the controller while it is in the application circuit. 

  

·         SPI: PIC18F supports 3-wire SPI communication between two devices on a common clock source. 

The data rate of SPI is more than that of USART. 

  

·         I2C: PIC18F supports Two Wire Interface (TWI) or I2C communication between two devices. It 

can work as both Master and Slave device. 

 

ARM Processors 

 

 ARM, previously Advanced RISC Machine, originally Acorn RISC Machine, is a family of reduced 

instruction set computing (RISC) architectures for computer processors, configured for various environments. 

Arm Holdings develops the architecture and licenses it to other companies, who design their own products 

that implement one of those architectures—including systems-on-chips (SoC) and systems-on-modules (SoM) 

that incorporate memory, interfaces, radios, etc. It also designs cores that implement this instruction set and 

licenses these designs to a number of companies that incorporate those core designs into their own products.  

Processors that have a RISC architecture typically require fewer transistors than those with a complex 

instruction set computing (CISC) architecture (such as the x86 processors found in most personal computers), 

which improves cost, power consumption, and heat dissipation. These characteristics are desirable for light, 

portable, battery-powered devices—including smartphones, laptops and tablet computers, and other embedded 

systems. For supercomputers, which consume large amounts of electricity, ARM could also be a power-

efficient solution. 

Arm Holdings periodically releases updates to the architecture. Architecture versions ARMv3 to ARMv7 

support 32-bit address space (pre-ARMv3 chips, made before Arm Holdings was formed, as used in the 

Acorn Archimedes, had 26-bit address space) and 32-bit arithmetic; most architectures have 32-bit fixed-

length instructions. The Thumb version supports a variable-length instruction set that provides both 32- and 

16-bit instructions for improved code density. Some older cores can also provide hardware execution of Java 

bytecodes. Released in 2011, the ARMv8-A architecture added support for a 64-bit address space and 64-bit 

arithmetic with its new 32-bit fixed-length instruction set. 

With over 100 billion ARM processors produced as of 2017, ARM is the most widely used instruction set 

architecture and the instruction set architecture produced in the largest quantity. Currently, the widely used 

Cortex cores, older "classic" cores, and specialized SecurCore cores variants are available for each of these to 

include or exclude optional capabilities. 

The British computer manufacturer Acorn Computers first developed the Acorn RISC Machine architecture 

(ARM) in the 1980s to use in its personal computers. Its first ARM-based products were coprocessor modules 

for the BBC Micro series of computers. After the successful BBC Micro computer, Acorn Computers 

considered how to move on from the relatively simple MOS Technology 6502 processor to address business 

markets like the one that was soon dominated by the IBM PC, launched in 1981.  

 

http://www.engineersgarage.com/tutorials/twi-i2c-interface
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Arm_Holdings
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/System_on_module
https://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Complex_instruction_set_computing
https://en.wikipedia.org/wiki/Complex_instruction_set_computing
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Laptop
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/Address_space
https://en.wikipedia.org/wiki/Acorn_Archimedes
https://en.wikipedia.org/wiki/Code_density
https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/64-bit
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core
https://en.wikipedia.org/wiki/ARM_SecurCore
https://en.wikipedia.org/wiki/Acorn_Computers
https://en.wikipedia.org/wiki/BBC_Micro
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/IBM_PC


EC 8691                                                              44                                                           Microprocessor and Microcontroller 

 

 

The Acorn Business Computer (ABC) plan required that a number of second processors be made to work with 

the BBC Micro platform, but processors such as the Motorola 68000 and National Semiconductor 32016 were 

considered unsuitable, and the 6502 was not powerful enough for a graphics-based user interface  

According to Sophie Wilson, all the processors tested at that time performed about the same, with about a 

4 Mbit/second bandwidth.  

After testing all available processors and finding them lacking, Acorn decided it needed a new architecture. 

Inspired by papers from the Berkeley RISC project, Acorn considered designing its own processor. A visit to 

the Western Design Center in Phoenix, where the 6502 was being updated by what was effectively a single-

person company, showed Acorn engineers Steve Furber and Sophie Wilson they did not need massive 

resources and state-of-the-art research and development facilities. 

 

Wilson developed the instruction set, writing a simulation of the processor in BBC BASIC that ran on a 

BBC Micro with a 6502 second processor. This convinced Acorn engineers they were on the right track. 

Wilson approached Acorn's CEO, Hermann Hauser, and requested more resources. Hauser gave his approval 

and assembled a small team to implement Wilson's model in hardware 

  

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Acorn_Business_Computer
https://en.wikipedia.org/wiki/Second_processor_(BBC_Micro)
https://en.wikipedia.org/wiki/Motorola_68000
https://en.wikipedia.org/wiki/National_Semiconductor_32016
https://en.wikipedia.org/wiki/Graphics-based_user_interface
https://en.wikipedia.org/wiki/Sophie_Wilson
https://en.wikipedia.org/wiki/Berkeley_RISC
https://en.wikipedia.org/wiki/Western_Design_Center
https://en.wikipedia.org/wiki/Steve_Furber
https://en.wikipedia.org/wiki/Research_and_development
https://en.wikipedia.org/wiki/BBC_BASIC
https://en.wikipedia.org/wiki/BBC_Micro_expansion_unit#6502_Second_Processor
https://en.wikipedia.org/wiki/Hermann_Hauser

	1. Minimum Mode configuration:
	2. Maximum Mode configuration:
	PROGRAMMED I/O
	INTERRUPT I/O
	BLOCK TRANSFERS AND DMA
	Pin Description:
	12. Explain in detail about Traffic light Control
	ABOUT THE COLORS OF TRAFFIC LIGHT CONTROL
	INTERFACING TRAFFIC LIGHT WITH 8086

	DS12887 RTC INTERFACING
	Architecture:
	PIC18 Harvard Architecture
	Features and Peripherals

